Neural Network Toolbox ${ }^{\text {TM }}$

 ReferenceR2014b

Mark Hudson Beale Martin T. Hagan Howard B. Demuth

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Neural Network Toolbox ${ }^{\text {TM }}$ Reference

© COPYRIGHT 1992-2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

June $1992 \quad$ First printing
April 1993 Second printing
January 1997 Third printing
July $1997 \quad$ Fourth printing
January $1998 \quad$ Fifth printing
September 2000
June 2001
July 2002
January 2003
June 2004
October 2004
Sixth printing
Seventh printing
Online only
Online only Online only Online only
October 2004
March 2005 Eighth printing
Online only
March 2006 Online only
September 2006
March 2007 Ninth printing Online only
September 2007
Online only
March 2008 Online only
October 2008 Online only
March $2009 \quad$ Online only
September 2009 Online only
March $2010 \quad$ Online only
September 2010 Online only
April $2011 \quad$ Online only
September 2011 Online only
March $2012 \quad$ Online only
September 2012 Online only
March 2013 Online only
September 2013 Online only
March $2014 \quad$ Online only
October $2014 \quad$ Online only

Revised for Version 3 (Release 11)
Revised for Version 4 (Release 12)
Minor revisions (Release 12.1)
Minor revisions (Release 13)
Minor revisions (Release 13SP1)
Revised for Version 4.0.3 (Release 14)
Revised for Version 4.0.4 (Release 14SP1)
Revised for Version 4.0.4
Revised for Version 4.0.5 (Release 14SP2)
Revised for Version 5.0 (Release 2006a)
Minor revisions (Release 2006b)
Minor revisions (Release 2007a)
Revised for Version 5.1 (Release 2007b)
Revised for Version 6.0 (Release 2008a)
Revised for Version 6.0.1 (Release 2008b)
Revised for Version 6.0.2 (Release 2009a)
Revised for Version 6.0.3 (Release 2009b)
Revised for Version 6.0.4 (Release 2010a)
Revised for Version 7.0 (Release 2010b)
Revised for Version 7.0.1 (Release 2011a)
Revised for Version 7.0.2 (Release 2011b)
Revised for Version 7.0.3 (Release 2012a)
Revised for Version 8.0 (Release 2012b)
Revised for Version 8.0.1 (Release 2013a)
Revised for Version 8.1 (Release 2013b)
Revised for Version 8.2 (Release 2014a)
Revised for Version 8.2.1 (Release 2014b)

Contents

Functions - Alphabetical List
1

Functions - Alphabetical List

adapt

Adapt neural network to data as it is simulated

Syntax

[net, $\mathrm{Y}, \mathrm{E}, \mathrm{Pf}, \mathrm{Af}, \mathrm{tr}]=\operatorname{adapt}($ net $, \mathrm{P}, \mathrm{T}, \mathrm{Pi}, \mathrm{Ai})$

To Get Help

Type help network/adapt.

Description

This function calculates network outputs and errors after each presentation of an input.
[net, $\mathrm{Y}, \mathrm{E}, \mathrm{Pf}, \mathrm{Af}, \mathrm{tr}$] = adapt(net, P, T, Pi, Ai) takes

net	Network
P	Network inputs
T	Network targets (default = zeros)
Pi	Initial input delay conditions (default = zeros)
Ai	Initial layer delay conditions (default = zeros)

and returns the following after applying the adapt function net. adaptFcn with the adaption parameters net.adaptParam:

net	Updated network
Y	Network outputs
E	Network errors
Pf	Final input delay conditions

Af	Final layer delay conditions
tr	Training record (epoch and perf)

Note that T is optional and is only needed for networks that require targets. Pi and Pf are also optional and only need to be used for networks that have input or layer delays.
adapt's signal arguments can have two formats: cell array or matrix.
The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented,

P	Ni-by-TS cell array	Each element $P\{i, t s\}$ is an Ri-by-Q matrix.
T	Nt-by-TS cell array	Each element T\{i,ts $\}$ is a Vi-by-Q matrix.
Pi	Ni-by-ID cell array	Each element Pi\{i,k\} is an Ri-by-Q matrix.
Ai	Nl-by-LD cell array	Each element $\mathrm{Ai}\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.
Y	No-by-TS cell array	Each element $Y\{\mathbf{i}, \mathrm{ts}\}$ is a Ui-by-Q matrix.
E	No-by-TS cell array	Each element $\mathrm{E}\{\mathrm{i}, \mathrm{ts}\}$ is a Ui-by-Q matrix.
Pf	Ni-by-ID cell array	Each element Pf $\{\mathrm{i}, \mathrm{k}\}$ is an Ri-by-Q matrix.
Af	Nl-by-LD cell array	Each element Af $\{i, k\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
N1	$=$	net. numLayers
No	$=$	net.numOutputs
ID	$=$	net.numInputDelays
LD	$=$	net. numLayerDelays

TS	$=$	Number of time steps
Q	$=$	Batch size
Ri	$=$	net.inputs $\{i\}$. size
Si	$=$	net.layers $\{i\}$. size
Ui	$=$	net.outputs $\{i\}$. size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to most recent:

$\operatorname{Pi}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time $\mathrm{ts}=\mathrm{k}-\mathrm{ID}$
$\operatorname{Pf}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time $\mathrm{ts}=\mathrm{TS}+\mathrm{k}-\mathrm{ID}$
$\mathrm{Ai}\{\mathrm{i}, \mathrm{k}\}$	$=$	Layer output i at time $\mathrm{ts}=\mathrm{k}-\mathrm{LD}$
$\operatorname{Af}\{\mathrm{i}, \mathrm{k}\}$	$=$	Layer output i at time ts $=\mathrm{TS}+\mathrm{k}-\mathrm{LD}$

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

P	(sum of Ri)-by-Q matrix
T	(sum of Vi)-by-Q matrix
Pi	(sum of Ri)-by-(ID*Q) matrix
Ai	(sum of Si)-by-(LD*Q) matrix
Y	(sum of Ui)-by-Q matrix
E	(sum of Ui)-by-Q matrix
Pf	(sum of Ri)-by-(ID*Q) matrix
Af	(sum of Si)-by-(LD*Q) matrix

Examples

Here two sequences of 12 steps (where T1 is known to depend on P1) are used to define the operation of a filter.

```
p1 = {-1 0
t1 ={-1; -1 1
```

Here linearlayer is used to create a layer with an input range of [-1 1], one neuron, input delays of 0 and 1 , and a learning rate of 0.1 . The linear layer is then simulated.

```
net = linearlayer([0 1],0.1);
```

Here the network adapts for one pass through the sequence.
The network's mean squared error is displayed. (Because this is the first call to adapt, the default Pi is used.)

```
[net,y,e,pf] = adapt(net,p1,t1);
mse(e)
```

Note that the errors are quite large. Here the network adapts to another 12 time steps (using the previous Pf as the new initial delay conditions).

```
p2 = {1 1 -1 -1 1 1 1 1 - 1 0 0 0 0 1 - 1 - 1};
t2 = {2 0-2 0 2 0 -1 0 0 1 0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)
```

Here the network adapts for 100 passes through the entire sequence.

```
p3 = [p1 p2];
t3 = [t1 t2];
for i = 1:100
    [net,y,e] = adapt(net,p3,t3);
end
mse(e)
```

The error after 100 passes through the sequence is very small. The network has adapted to the relationship between the input and target signals.

More About

Algorithms

adapt calls the function indicated by net. adaptFcn, using the adaption parameter values indicated by net. adaptParam.

Given an input sequence with TS steps, the network is updated as follows: Each step in the sequence of inputs is presented to the network one at a time. The network's weight and bias values are updated after each step, before the next step in the sequence is presented. Thus the network is updated TS times.

See Also

sim | init | train | revert

adaptwb

Adapt network with weight and bias learning rules

Syntax

```
[net,ar,Ac] = adapt(net,Pd,T,Ai)
```


Description

This function is normally not called directly, but instead called indirectly through the function adapt after setting a network's adaption function (net.adaptFcn) to this function.

```
[net,ar,Ac] = adapt(net,Pd,T,Ai) takes these arguments,
```

net	Neural network
Pd	Delayed processed input states and inputs
T	Targets
Ai	Initial layer delay states

and returns

net	Neural network after adaption
ar	Adaption record
Ac	Combined initial layer states and layer outputs

Examples

Linear layers use this adaption function. Here a linear layer with input delays of 0 and 1 , and a learning rate of 0.5 , is created and adapted to produce some target data t when given some input data x. The response is then plotted, showing the network's error going down over time.

```
x = {-1 1 0 1 0 0 1 1 1 -1 0
```



```
net = linearlayer([0 1],0.5);
net.adaptFcn
[net,y,e,xf] = adapt(net,x,t);
plotresponse(t,y)
```


See Also

adapt

adddelay

Add delay to neural network response

Syntax

```
net = adddelay(net,n)
```


Description

net $=$ adddelay (net, n) takes these arguments,

net	Neural network
n	Number of delays

and returns the network with input delay connections increased, and output feedback delays decreased, by the specified number of delays n. The result is a network which behaves identically, except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples

Here a time delay network is created, trained and simulated in its original form on an input time series X and target series T. It is then simulated with a delay removed and then added back. These first and third outputs will be identical, while the second will be shifted by one timestep.

```
[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi);
y1 = net(Xs)
net2 = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi)
```

```
net3 = adddelay(net2)
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi)
```


See Also

closeloop | openloop | removedelay

boxdist

Distance between two position vectors

Syntax

d = boxdist(pos)

Description

boxdist is a layer distance function that is used to find the distances between the layer's neurons, given their positions.
d = boxdist(pos) takes one argument,

```
pos 
```

and returns the S-by-S matrix of distances.
boxdist is most commonly used with layers whose topology function is gridtop.

Examples

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and then find their distances.

```
pos = rand(3,10);
d = boxdist(pos)
```


Network Use

To change a network so that a layer's topology uses boxdist, set net.layers\{i\}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist.

More About

Algorithms

The box distance D between two position vectors $P i$ and $P j$ from a set of S vectors is Dij $=\max (a b s(P i-P j))$

See Also
dist | linkdist | mandist | sim

bttderiv

Backpropagation through time derivative function

Syntax

bttderiv('dperf_dwb', net, X, T,Xi,Ai, EW)
bttderiv('de_dwb', net, X, T, Xi, Ai, EW)

Description

This function calculates derivatives using the chain rule from a network's performance back through the network, and in the case of dynamic networks, back through time.
bttderiv('dperf_dwb', net, X, T, Xi, Ai, EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
bttderiv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = bttderiv('dperf_dwb',net,x,t)
jwb = bttderiv('de_dwb',net,x,t)
```


See Also

defaultderiv | fpderiv | num2deriv | num5deriv | staticderiv

cascadeforwardnet

Cascade-forward neural network

Syntax

cascadeforwardnet(hiddenSizes,trainFcn)

Description

Cascade-forward networks are similar to feed-forward networks, but include a connection from the input and every previous layer to following layers.

As with feed-forward networks, a two-or more layer cascade-network can learn any finite input-output relationship arbitrarily well given enough hidden neurons.
cascadeforwardnet (hiddenSizes, trainFcn) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function $($ default = 'trainlm ')

and returns a new cascade-forward neural network.

Examples

Here a cascade network is created and trained on a simple fitting problem.

```
[x,t] = simplefit_dataset;
net = cascadeforwardnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
perf =
```

$1.9372 \mathrm{e}-05$

See Also
feedforwardnet

catelements

Concatenate neural network data elements

Syntax

```
catelements(x1,x2,..., xn)
[x1; x2; ... xn]
```


Description

catelements (x1, x2, ..., xn) takes any number of neural network data values, and merges them along the element dimension (i.e., the matrix row dimension).

If all arguments are matrices, this operation is the same as [x1; x2; ... xn].
If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then the matrices in the same positions in each argument are concatenated.

Examples

This code concatenates the elements of two matrix data values.

```
x1 = [ll 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6; 2 9 1]
y = catelements(x1,x2)
```

This code concatenates the elements of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3] [4 5 6]; [2 5 4] [9 7 5]}
y = catelements(x1,x2)
```

```
See Also
nndata | numelements | getelements | setelements | catsignals | catsamples
| cattimesteps
```


catsamples

Concatenate neural network data samples

Syntax

```
catsamples(x1,x2,\ldots,xn)
[x1 x2 ... xn]
catsamples(x1,x2,\ldots,xn,'pad',v)
```


Description

catsamples ($x 1, x 2, \ldots, x n$) takes any number of neural network data values, and merges them along the samples dimension (i.e., the matrix column dimension).

If all arguments are matrices, this operation is the same as [x 1 x 2 $\ldots \mathrm{xn}$].
If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and then the matrices in the same positions in each argument are concatenated.
catsamples ($\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{xn}$, ' pad', v) allows samples with varying numbers of timesteps (columns of cell arrays) to be concatenated by padding the shorter time series with the value v, until they are the same length as the longest series. If v is not specified, then the value NaN is used, which is often used to represent unknown or don't-care inputs or targets.

Examples

This code concatenates the samples of two matrix data values.

```
x1 = [1 2 3; 4 7 4]
x2 = [5 8 2; 4 7 6]
y = catsamples(x1,x2)
```

This code concatenates the samples of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
```

```
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [0 7 7 5]}
y = catsamples(x1,x2)
```

Here the samples of two cell array data values, with unequal numbers of timesteps, are concatenated.

```
x1 = {1 2 3 4 5};
x2 = {10 11 12};
y = catsamples(x1,x2,'pad')
```


See Also

nndata | numsamples | getsamples | setsamples | catelements | catsignals | cattimesteps

catsignals

Concatenate neural network data signals

Syntax

```
catsignals(x1,x2,\ldots,xn)
{x1; x2; ...; xn}
```


Description

catsignals ($x 1, x 2, \ldots, x n$) takes any number of neural network data values, and merges them along the element dimension (i.e., the cell row dimension).

If all arguments are matrices, this operation is the same as $\{x 1 ; x 2 ; \ldots ; x n\}$.
If any argument is a cell array, then all non-cell array arguments are enclosed in cell arrays, and the cell arrays are concatenated as $[x 1 ; x 2 ; \ldots ; x n]$.

Examples

This code concatenates the signals of two matrix data values.

```
x1 = [\begin{array}{lllllll}{1}&{2}&{3;}&{4}&{7}&{4}\end{array}]
x2 = [5 8 2; 4 7 6]
y = catsignals(x1,x2)
```

This code concatenates the signals of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [9 7 5]}
y = catsignals(x1,x2)
```


See Also

nndata | numsignals | getsignals | setsignals | catelements | catsamples | cattimesteps

cattimesteps

Concatenate neural network data timesteps

Syntax

```
cattimesteps(x1,x2,...,xn)
{x1 x2 ... xn}
```


Description

cattimesteps (x1, x2, ..., xn) takes any number of neural network data values, and merges them along the element dimension (i.e., the cell column dimension).

If all arguments are matrices, this operation is the same as $\{x 1 \times 2 \ldots x n\}$.
If any argument is a cell array, all non-cell array arguments are enclosed in cell arrays, and the cell arrays are concatenated as [x1 x2 ... xn].

Examples

This code concatenates the elements of two matrix data values.

```
x1 = [llllllllll
x2 = [5 8 2; 4 7 6]
y = cattimesteps(x1,x2)
```

This code concatenates the elements of two cell array data values.

```
x1 = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
x2 = {[2 1 3; 5 4 1] [4 5 6; 9 4 8]; [2 5 4] [0 7 7 5]}
y = cattimesteps(x1,x2)
```


See Also

nndata | numtimesteps | gettimesteps | settimesteps | catelements | catsignals | catsamples

cellmat

Create cell array of matrices

Syntax

cellmat (A, B, C, D, v)

Description

cellmat (A, B, C, D, v) takes four integer values and one scalar value v, and returns an A-by-B cell array of C-by-D matrices of value v. If the value v is not specified, zero is used.

Examples

Here two cell arrays of matrices are created.

```
cm1 = cellmat(2,3,5,4)
cm2 = cellmat(3,4,2,2,pi)
```


See Also

nndata

closeloop

Convert neural network open-loop feedback to closed loop

Syntax

```
net = closeloop(net)
[net,xi,ai] = closeloop(net,xi,ai)
```


Description

net $=$ closeloop (net) takes a neural network and closes any open-loop feedback. For each feedback output i whose property net. outputs\{i\}.feedbackMode is 'open', it replaces its associated feedback input and their input weights with layer weight connections coming from the output. The net. outputs\{i\}.feedbackMode property is set to 'closed', and the net. outputs\{i\}.feedbackInput property is set to an empty matrix. Finally, the value of net. outputs\{i\}.feedbackDelays is added to the delays of the feedback layer weights (i.e., to the delays values of the replaced input weights).
[net,xi,ai] = closeloop(net,xi,ai) converts an open-loop network and its current input delay states xi and layer delay states ai to closed-loop form.

Examples

Convert NARX Network to Closed-Loop Form

This example shows how to design a NARX network in open-loop form, then convert it to closed-loop form.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
```

```
net = closeloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Ycloesed = net(Xs,Xi,Ai);
```


Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet and narnet.

See Also
narnet | narxnet | noloop | openloop

combvec

Create all combinations of vectors

Syntax

combvec (A1, A2...)

Description

combvec (A1, A2...) takes any number of inputs,

A1	Matrix of N1 (column) vectors
A2	Matrix of N2 (column) vectors

and returns a matrix of (N 1 *N2*...) column vectors, where the columns consist of all possibilities of A2 vectors, appended to A1 vectors, etc.

Examples

```
a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)
```


compet

Competitive transfer function

Graph and Symbol

Syntax

A = compet (N, FP)
info $=$ compet('code')

Description

compet is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{compet}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns the S -by- Q matrix A with a 1 in each column where the same column of N has its maximum value, and 0 elsewhere.
info $=$ compet('code') returns information according to the code string specified: compet('name') returns the name of this function.

```
compet('output',FP) returns the [min max] output range.
compet('active',FP) returns the [min max] active input range.
compet('fullderiv') returns 1 or 0, depending on whether dA_dN is S-by-S-by-Q or S-
by-Q.
```

compet ('fpnames') returns the names of the function parameters.
compet('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector N , calculate the output, and plot both with bar graphs.

```
n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'compet';
```


See Also

sim | softmax

competlayer

Competitive layer

Syntax

competlayer(numClasses, kohonenLR, conscienceLR)

Description

Competitive layers learn to classify input vectors into a given number of classes, according to similarity between vectors, with a preference for equal numbers of vectors per class.
competlayer(numClasses, kohonenLR, conscienceLR) takes these arguments,

numClasses	Number of classes to classify inputs (default = 5)
kohonenLR	Learning rate for Kohonen weights (default $=0.01$)
conscienceLR	Learning rate for conscience bias (default $=0.001$)

and returns a competitive layer with numClasses neurons.

Examples

Here a competitive layer is trained to classify 150 iris flowers into 6 classes.

```
inputs = iris_dataset;
net = competlayer(6);
net = train(net,inputs);
view(net)
outputs = net(inputs);
classes = vec2ind(outputs);
```


See Also
selforgmap | lvqnet | patternnet

con2seq

Convert concurrent vectors to sequential vectors

Syntax

$S=c o n 2 s e q(b)$
$S=c o n 2 s e q(b, T S)$

Description

Neural Network Toolbox ${ }^{\mathrm{TM}}$ software arranges concurrent vectors with a matrix, and sequential vectors with a cell array (where the second index is the time step).
con2seq and seq2con allow concurrent vectors to be converted to sequential vectors, and back again.
$S=$ con2seq(b) takes one input,

b	R-by-TS matrix

and returns one output,

S	1-by-TS cell array of R-by-1 vectors

$S=$ con2seq ($b, T S$) can also convert multiple batches,

b	N-by- 1 cell array of matrices with $M *$ TS columns
TS	Time steps

and returns

S	N-by-TS cell array of matrices with M columns

Examples

Here a batch of three values is converted to a sequence.

```
p1 = [llll
p2 = con2seq(p1)
```

Here, two batches of vectors are converted to two sequences with two time steps.
$\mathrm{p} 1=\left\{\left[\begin{array}{llllllll}1 & 3 & 4 & 5 ; & 1 & 1 & 7 & 4\end{array}\right] ;\left[\begin{array}{llllllll}7 & 3 & 4 & 4 ; & 6 & 9 & 4 & 1\end{array}\right]\right\}$
$p 2=\operatorname{con} 2 \operatorname{seq}(p 1,2)$

See Also
 seq2con | concur

concur

Create concurrent bias vectors

Syntax

concur (B, Q)

Description

```
concur(B,Q)
```

B	S-by-1 bias vector (or an Nl-by-1 cell array of vectors)
Q	Concurrent size

and returns an S-by-B matrix of copies of B (or an Nl-by-1 cell array of matrices).

Examples

Here concur creates three copies of a bias vector.
b = [1; 3; 2; -1];
concur (b,3)

Network Use

To calculate a layer's net input, the layer's weighted inputs must be combined with its biases. The following expression calculates the net input for a layer with the netsum net input function, two input weights, and a bias:
$\mathrm{n}=\operatorname{netsum}(\mathrm{z1}, \mathrm{z}, \mathrm{b})$
The above expression works if $\mathbf{Z 1}, \mathbf{Z 2}$, and B are all S-by- 1 vectors. However, if the network is being simulated by sim (or adapt or train) in response to Q concurrent
vectors, then $Z 1$ and $Z 2$ will be S-by-Q matrices. Before B can be combined with $Z 1$ and $Z 2$, you must make Q copies of it.
$\mathrm{n}=\operatorname{netsum}(\mathrm{z} 1, \mathrm{z} 2, \operatorname{concur}(\mathrm{~b}, \mathrm{q}))$

See Also
 con2seq | netprod | netsum | seq2con | sim

configure

Configure network inputs and outputs to best match input and target data

Syntax

```
net = configure(net,x,t)
net = configure(net,x)
net = configure(net,'inputs',x,i)
net = configure(net,'outputs',t,i)
```


Description

Configuration is the process of setting network input and output sizes and ranges, input preprocessing settings and output postprocessing settings, and weight initialization settings to match input and target data.

Configuration must happen before a network's weights and biases can be initialized. Unconfigured networks are automatically configured and initialized the first time train is called. Alternately, a network can be configured manually either by calling this function or by setting a network's input and output sizes, ranges, processing settings, and initialization settings properties manually.
net $=$ configure (net, $x, t)$ takes input data x and target data t, and configures the network's inputs and outputs to match.
net $=$ configure (net, x) configures only inputs.
net $=$ configure(net, 'inputs', x, i) configures the inputs specified with the index vector i. If i is not specified all inputs are configured.
net $=$ configure(net, 'outputs', $\mathrm{t}, \mathrm{i})$ configures the outputs specified with the index vector i. If i is not specified all targets are configured.

Examples

Here a feedforward network is created and manually configured for a simple fitting problem (as opposed to allowing train to configure it).

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20); view(net)
net = configure(net,x,t); view(net)
```


See Also
 isconfigured | init | train | unconfigure

confusion

Classification confusion matrix

Syntax

[c,cm,ind, per] = confusion(targets,outputs)

Description

[c,cm,ind, per] = confusion(targets,outputs) takes these values:

targets	S-by-Q matrix, where each column vector contains a single 1 value, with all other elements 0 . The index of the 1 indicates which of S categories that vector represents.
outputs	S-by-Q matrix, where each column contains values in the range [0,1]. The index of the largest element in the column indicates which of S categories that vector represents.

and returns these values:

c	Confusion value $=$ fraction of samples misclassified
cm	S-by-S confusion matrix, where $\mathrm{cm}(\mathrm{i}, \mathrm{j})$ is the number of samples whose target is the ith class that was classified as j
ind	S-by-S cell array, where ind\{i,j\} contains the indices of samples with the ith target class, but j th output class
per	S-by-4 matrix, where each row summarizes four percentages associated with the ith class: per(i,1) false negative rate = (false negatives)/(all output negatives) per(i,2) false positive rate = (false positives)/(all output positives) per(i,3) true positive rate = (true positives)/(all output positives) per(i,4) true negative rate = (true negatives)/(all output negatives)

[c,cm,ind, per] = confusion(TARGETS,OUTPUTS) takes these values:

targets	1 -by-Q vector of $1 / 0$ values representing membership
outputs	S-by-Q matrix, of value in $[0,1]$ interval, where values greater than or equal to 0.5 indicate class membership

and returns these values:

c	Confusion value $=$ fraction of samples misclassified
cm	2-by-2 confusion matrix
ind	2-by-2 cell array, where ind $\{i, j\}$ contains the indices of samples whose target is 1 versus 0, and whose output was greater than or equal to 0.5 versus less than 0.5
per	2-by-4 matrix where each ith row represents the percentage of false negatives, false positives, true positives, and true negatives for the class and out-of-class

Examples

```
[x,t] = simpleclass_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
[c,cm,ind,per] = confusion(t,y)
```

See Also
plotconfusion | roc

convwf

Convolution weight function

Syntax

```
Z = convwf(W,P)
dim = convwf('size',S,R,FP)
dw = convwf('dw',W,P,Z,FP)
info = convwf('code')
```


Description

Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{convwf}(W, P)$ returns the convolution of a weight matrix W and an input P.
dim = convwf('size', S, R,FP) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size.
$d w=c o n v w f(' d w ', W, P, Z, F P)$ returns the derivative of Z with respect to W.
info $=$ convwf('code') returns information about this function. The following codes are defined:

'deriv'	Name of derivative function
' fullderiv'	Reduced derivative $=2$, full derivative = 1, linear derivative $=0$
'pfullderiv'	Input: reduced derivative = 2, full derivative = 1, linear derivative = 0
'wfullderiv'	Weight: reduced derivative $=2$, full derivative = 1, linear derivative = 0
'name'	Full name
'fpnames '	Returns names of function parameters
'fpdefaults'	Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.
$\mathrm{W}=\operatorname{rand}(4,1)$;
$P=\operatorname{rand}(8,1)$;
$Z=\operatorname{convwf}(W, P)$

Network Use

To change a network so an input weight uses convwf, set net.inputWeight $\{i, j\}$. weightFcn to 'convwf'. For a layer weight, set net. layerWeight $\{i, j\}$.weightFcn to 'convwf'.

In either case, call sim to simulate the network with convwf.

crossentropy

Neural network performance

Syntax

```
perf = crossentropy(net,targets,outputs,perfWeights)
perf = crossentropy(
```

\qquad

``` , Name, Value)
```


Description

perf = crossentropy (net,targets, outputs, perfWeights) calculates a network performance given targets, outputs, performance weights, and optional parameters with a measure that heavily penalizes outputs that are extremely inaccurate (y near 1-t), with very little penalty for fairly correct classifications (y near t). Minimizing crossentropy leads to good classifiers.
perf = crossentropy (\qquad , Name, Value) supports customization according to the specified name-value pair arguments.

Examples

Calculate Network Performance

This example shows how to create a pattern recognition network, train it to classify iris flowers, and then calculate its performance.

```
[x,t] = iris_dataset;
net = patternnet(10);
net = train(net,x,t);
y = net(x);
perf = crossentropy(net,t,y)
```


Set crossentropy as Performance Function

This example shows how to set up a feedforward network, which usually uses mean squared error, to use the cross-entropy performance function.

```
net = feedfowardnet(10);
net.performFcn = 'crossentropy';
```


Input Arguments

net - neural network

network object
Neural network, specified as a network object.
Example: net = feedforwardnet(10);

targets - neural network target values

vector or cell array of numeric values
Neural network target values, specified as a vector or cell array of numeric values. Network target values define the desired outputs, and can be specified as an N -by-1 column vector of numeric values, an N -by- Q matrix of Q N -element vectors, or an M-by-TS cell array where each element is an Ni-by-Q matrix. In each of these cases, N or Ni indicates a vector length, Q the number of samples, M the number of signals for neural networks with multiple outputs, and TS is the number of time steps for time series data. targets must have the same dimensions as outputs.
targets can include NaN values to indicate unknown or don't-care output values. The performance of NaN target values is ignored.

Example:

Data Types: double | cell

outputs - neural network output values

vector or cell array of numeric values
Neural network output values, specified as a vector or cell array of numeric values. Network output values can be specified as an N -by- 1 column vector of numeric values, an N-by- Q matrix of $Q N$-element vectors, or an M-by-TS cell array where each element is an Ni-by- Q matrix. In each of these cases, N or Ni indicates a vector length, Q the number of samples, M the number of signals for neural networks with multiple outputs and TS is the number of time steps for time series data. outputs must have the same dimensions as targets.

Outputs can include NaN values to indicate unknown output values, presumably produced as a result of NaN input values (also representing unknown or don't-care values). The performance of NaN output values is ignored.

Example:

Data Types: double | cell

perfWeights - performance weights

\{1\} (default) | vector or cell array of numeric values
Performance weights, specified as a vector or cell array of numeric values. Performance weights are an optional argument defining the importance of each performance value, associated with each target value, using values between 0 and 1 . Performance values of 0 indicate targets to ignore, values of 1 indicate targets to be treated with normal importance. Values between 0 and 1 allow targets to be treated with relative importance.

Performance weights have many uses. They are helpful for classification problems, to indicate which classifications (or misclassifications) have relatively greater benefits (or costs). They can be useful in time series problems where obtaining a correct output on some time steps, such as the last time step, is more important than others. Performance weights can also be used to encourage a neural network to best fit samples whose targets are known most accurately, while giving less importance to targets which are known to be less accurate.
perfWeights can have the same dimensions as targets and outputs. Alternately, each dimension of the performance weights can either match the dimension of targets and outputs, or be 1 . For instance, if targets is an N-by- Q matrix defining Q samples of N -element vectors, the performance weights can be N -by- Q indicating a different importance for each target value, or N -by- 1 defining a different importance for each row of the targets, or 1 -by- Q indicating a different importance for each sample, or be the scalar 1 (i.e. 1-by-1) indicating the same importance for all target values.

Similarly, if outputs and targets are cell arrays of matrices, the perfWeights can be a cell array of the same size, a row cell array (indicating the relative importance of each time step), a column cell array (indicating the relative importance of each neural network output), or a cell array of a single matrix or just the matrix (both cases indicating that all matrices have the same importance values). For any problem, a perfWeights value of $\{1\}$ or the scalar 1 indicates all performances have equal importance.

[^0]
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example:

'regularization' - proportion of performance attributed to weight/bias values 0 (default) | numeric value in the range $(0,1)$

Proportion of performance attributed to weight/bias values, specified as a double between 0 (the default) and 1. A larger value penalizes the network for large weights, and the more likely the network function will avoid overfitting.

Example: 'regularization',0

Data Types: single | double

```
'normalization' - Normalization mode for outputs, targets, and errors
'none'(default) | 'standard' | 'percent'
```

Normalization mode for outputs, targets, and errors, specified as 'none', 'standard', or 'percent'. 'none' performs no normalization. 'standard ' results in outputs and targets being normalized to $(-1,+1)$, and therefore errors in the range $(-2,+2)$. 'percent ' normalizes outputs and targets to $(-0.5,0.5)$ and errors to $(-1,1)$.
Example: 'normalization', 'standard'
Data Types: char

Output Arguments

perf - network performance

double
Network performance, returned as a double in the range $(0,1)$.

See Also

mae | mse | sae | sse

defaultderiv

Default derivative function

Syntax

defaultderiv('dperf_dwb', net, X, T,Xi, Ai, EW)
defaultderiv('de_dwb', net, X, T, Xi, Ai, EW)

Description

This function chooses the recommended derivative algorithm for the type of network whose derivatives are being calculated. For static networks, defaultderiv calls staticderiv; for dynamic networks it calls bttderiv to calculate the gradient and fpderiv to calculate the Jacobian.
defaultderiv('dperf_dwb', net, X, T, Xi, Ai, EW) takes these arguments,

net	Neural network
X	Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T	Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (or N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
defaultderiv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = defaultderiv('dperf_dwb',net,x,t)
```


See Also

bttderiv | fpderiv | num2deriv | num5deriv | staticderiv

disp

Neural network properties

Syntax

disp(net)

To Get Help

Type help network/disp.

Description

disp(net) displays a network's properties.

Examples

Here a perceptron is created and displayed.

```
net = newp([-1 1; 0 2],3);
disp(net)
```


See Also

display | sim | init | train | adapt

display

Name and properties of neural network variables

Syntax

display(net)

To Get Help

Type help network/display.

Description

display (net) displays a network variable's name and properties.

Examples

Here a perceptron variable is defined and displayed.

```
net = newp([-1 1; 0 2],3);
```

display(net)
display is automatically called as follows:
net

```
See Also
disp | sim | init | train | adapt
```


dist

Euclidean distance weight function

Syntax

```
Z = dist(W,P,FP)
dim = dist('size',S,R,FP)
dw = dist('dw',W,P,Z,FP)
D = dist(pos)
info = dist('code')
```


Description

Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{dist}(W, P, F P)$ takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Struct of function parameters (optional, ignored)

and returns the S-by-Q matrix of vector distances.
dim = dist('size', S, R,FP) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].
$d w=\operatorname{dist}(' d w ', W, P, Z, F P)$ returns the derivative of Z with respect to W.
dist is also a layer distance function which can be used to find the distances between neurons in a layer.
$D=$ dist (pos) takes one argument,

pos	N-by-S matrix of neuron positions

and returns the S-by-S matrix of distances.
info $=$ dist('code') returns information about this function. The following codes are supported:

'deriv'	Name of derivative function
' fullderiv'	Full derivative = 1, linear derivative = 0
'pfullderiv'	Input: reduced derivative = 2, full derivative = 1, linear derivative = 0
'name'	Full name
' fpnames'	Returns names of function parameters
' fpdefaults'	Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

```
W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)
```

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and find their distances.

```
pos = rand(3,10);
D = dist(pos)
```


Network Use

You can create a standard network that uses dist by calling newpnn or newgrnn.
To change a network so an input weight uses dist, set net.inputWeight $\{i, j\}$.weightFcn to 'dist'. For a layer weight, set net.layerWeight\{i,j\}.weightFcn to 'dist'.

To change a network so that a layer's topology uses dist, set net.layers\{i\}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist.
See newpnn or newgrnn for simulation examples.

More About

Algorithms

The Euclidean distance d between two vectors X and Y is $\mathrm{d}=\operatorname{sum}((x-y) . \wedge 2) . \wedge 0.5$

See Also

sim | dotprod | negdist | normprod | mandist | linkdist

distdelaynet

Distributed delay network

Syntax

distdelaynet(delays,hiddenSizes,trainFcn)

Description

Distributed delay networks are similar to feedforward networks, except that each input and layer weights has a tap delay line associated with it. This allows the network to have a finite dynamic response to time series input data. This network is also similar to the time delay neural network (timedelaynet), which only has delays on the input weight.
distdelaynet(delays, hiddenSizes,trainFcn) takes these arguments,

delays	Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm ')

and returns a distributed delay neural network.

Examples

Here a distributed delay neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
net = distdelaynet({1:2,1:2},10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)
```

```
perf =
    0.0323
```


See Also
preparets | removedelay | timedelaynet | narnet | narxnet

divideblock

Divide targets into three sets using blocks of indices

Syntax

[trainInd, valInd,testInd] = divideblock(Q,trainRatio, valRatio,testRatio)

Description

[trainInd, valInd,testInd] =
divideblock(Q,trainRatio, valRatio, testRatio) separates targets into three sets: training, validation, and testing. It takes the following inputs:

Q	Number of targets to divide up.
trainRatio	Ratio of targets for training. Default $=0.7$.
valRatio	Ratio of targets for validation. Default $=0.15$.
testRatio	Ratio of targets for testing. Default $=0.15$.

and returns

trainInd	Training indices
valInd	Validation indices
testInd	Test indices

Examples

[trainInd, valInd,testInd] = divideblock(3000,0.6,0.2,0.2);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```

See Also
divideind | divideint | dividerand | dividetrain

divideind

Divide targets into three sets using specified indices

Syntax

[trainInd,valInd,testInd] = divideind(Q,trainInd,valInd,testInd)

Description

[trainInd, valInd,testInd] = divideind(Q,trainInd, valInd,testInd) separates targets into three sets: training, validation, and testing, according to indices provided. It actually returns the same indices it receives as arguments; its purpose is to allow the indices to be used for training, validation, and testing for a network to be set manually.

It takes the following inputs,

Q	Number of targets to divide up
trainInd	Training indices
valInd	Validation indices
testInd	Test indices

and returns

trainInd	Training indices (unchanged)
valInd	Validation indices (unchanged)
testInd	Test indices (unchanged)

Examples

[trainInd, valInd,testInd] = ...
divideind(3000, 1:2000,2001:2500,2501:3000);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```

```
See Also
```

See Also
divideblock | divideint | dividerand | dividetrain

```
divideblock | divideint | dividerand | dividetrain
```


divideint

Divide targets into three sets using interleaved indices

Syntax

[trainInd, valInd,testInd] =
divideint(Q,trainRatio, valRatio,testRatio)

Description

[trainInd, valInd,testInd] = divideint(Q,trainRatio, valRatio, testRatio) separates targets into three sets: training, validation, and testing. It takes the following inputs,

Q	Number of targets to divide up.
trainRatio	Ratio of vectors for training. Default $=0.7$.
valRatio	Ratio of vectors for validation. Default $=0.15$.
testRatio	Ratio of vectors for testing. Default $=0.15$.

and returns

trainInd	Training indices
valInd	Validation indices
testInd	Test indices

Examples

[trainInd, valInd,testInd] = divideint(3000,0.6,0.2,0.2);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```

See Also
divideblock | divideind | dividerand | dividetrain

dividerand

Divide targets into three sets using random indices

Syntax

[trainInd, valInd,testInd] =
dividerand(Q,trainRatio, valRatio,testRatio)

Description

[trainInd, valInd,testInd] =
dividerand(Q, trainRatio, valRatio, testRatio) separates targets into three sets: training, validation, and testing. It takes the following inputs,

Q	Number of targets to divide up.
trainRatio	Ratio of vectors for training. Default $=0.7$.
valRatio	Ratio of vectors for validation. Default $=0.15$.
testRatio	Ratio of vectors for testing. Default $=0.15$.

and returns

trainInd	Training indices
valInd	Validation indices
testInd	Test indices

Examples

[trainInd, valInd,testInd] = dividerand(3000, 0.6, 0.2, 0.2);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.

```
net.divideFcn
net.divideParam
net.divideMode
```

See Also
divideblock | divideind | divideint | dividetrain

dividetrain

Assign all targets to training set

Syntax

```
[trainInd,valInd,testInd] =
dividetrain(Q,trainRatio,valRatio,testRatio)
```


Description

[trainInd, valInd,testInd] =
dividetrain(Q,trainRatio, valRatio, testRatio) assigns all targets to the training set and no targets to either the validation or test sets. It takes the following inputs,

Q \quad Number of targets to divide up.

and returns

trainInd	Training indices equal to 1:Q
valInd	Empty validation indices, []
test Ind	Empty test indices, []

Examples

[trainInd,valInd,testInd] = dividetrain(3000);

Network Use

Here are the network properties that define which data division function to use, what its parameters are, and what aspects of targets are divided up, when train is called.
net.divideFcn

```
net.divideParam
net.divideMode
```


See Also

divideblock | divideind | divideint | dividerand

dotprod

Dot product weight function

Syntax

```
Z = dotprod(W,P,FP)
dim = dotprod('size',S,R,FP)
dw = dotprod('dw',W,P,Z,FP)
info = dotprod('code')
```


Description

Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{dotprod}(W, P, F P)$ takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Struct of function parameters (optional, ignored)

and returns the S-by-Q dot product of W and P.
dim $=$ dotprod('size', S, R, FP) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [$\mathrm{S}-\mathrm{by}-\mathrm{R}$].
$d w=\operatorname{dotprod}(' d w ', W, P, Z, F P)$ returns the derivative of Z with respect to W.
info $=$ dotprod('code') returns information about this function. The following codes are defined:

'deriv'	Name of derivative function
'pfullderiv'	Input: reduced derivative = 2, full derivative = 1, linear derivative = 0
'wfullderiv'	Weight: reduced derivative = 2, full derivative = 1, linear derivative = 0

'name'	Full name
' $f p n a m e s ~ ' ~$	Returns names of function parameters
'fpdefaults '	Returns default function parameters

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

W = rand $(4,3)$;
$\mathrm{P}=$ rand $(3,1)$;
Z = dotprod (W, P)

Network Use

You can create a standard network that uses dotprod by calling feedforwardnet.
To change a network so an input weight uses dotprod, set net.inputWeight\{i,j\}.weightFcn to 'dotprod'. For a layer weight, set net.layerWeight\{i,j\}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

```
See Also
sim | dist | feedforwardnet | negdist | normprod
```


elliotsig

Elliot symmetric sigmoid transfer function

Syntax

```
A = elliotsig(N)
```


Description

Transfer functions convert a neural network layer's net input into its net output.
A = elliotsig(N) takes an S-by-Q matrix of $S N$-element net input column vectors and returns an S-by- Q matrix A of output vectors, where each element of N is squashed from the interval [-inf inf] to the interval [-1 1] with an "S-shaped" function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple computing hardware as it does not require any exponential or trigonometric functions. Its disadvantage is that it only flattens out for large inputs, so its effect is not as local as other sigmoid functions. This might result in more training iterations, or require more neurons to achieve the same accuracy.

Examples

Calculate a layer output from a single net input vector:

```
n = [0; 1; -0.5; 0.5];
a = elliotsig(n);
```

Plot the transfer function:

```
n = -5:0.01:5;
plot(n, elliotsig(n))
set(gca,'dataaspectratio',[\begin{array}{lll}{1}&{1}&{1}\end{array}],'xgrid','on','ygrid','on')
```

For a network you have already defined, change the transfer function for layer i:

```
net.layers{i}.transferFcn = 'elliotsig';
```


See Also
 elliot2sig | logsig | tansig

elliot2sig

Elliot 2 symmetric sigmoid transfer function

Syntax

```
A = elliot2sig(N)
```


Description

Transfer functions convert a neural network layer's net input into its net output. This function is a variation on the original Elliot sigmoid function. It has a steeper slope, closer to tansig, but is not as smooth at the center.
$A=$ elliot2sig(N) takes an S-by-Q matrix of S N-element net input column vectors and returns an S-by- Q matrix A of output vectors, where each element of N is squashed from the interval [-inf inf] to the interval [-1 1] with an "S-shaped" function.

The advantage of this transfer function over other sigmoids is that it is fast to calculate on simple computing hardware as it does not require any exponential or trigonometric functions. Its disadvantage is that it departs from the classic sigmoid shape around zero.

Examples

Calculate a layer output from a single net input vector:

```
n = [0; 1; -0.5; 0.5];
a = elliot2sig(n);
```

Plot the transfer function:

```
n = -5:0.01:5;
plot(n, elliot2sig(n))
set(gca,'dataaspectratio',[\begin{array}{lll}{1}&{1}&{1}\end{array}],'xgrid','on','ygrid','on')
```

For a network you have already defined, change the transfer function for layer i:

```
net.layers{i}.transferFcn = 'elliot2sig';
```


See Also
 elliotsig | logsig | tansig

elmannet

Elman neural network

Syntax

elmannet(layerdelays,hiddenSizes,trainFcn)

Description

Elman networks are feedforward networks (feedforwardnet) with the addition of layer recurrent connections with tap delays.

With the availability of full dynamic derivative calculations (fpderiv and bttderiv), the Elman network is no longer recommended except for historical and research purposes. For more accurate learning try time delay (timedelaynet), layer recurrent (layrecnet), NARX (narxnet), and NAR (narnet) neural networks.

Elman networks with one or more hidden layers can learn any dynamic input-output relationship arbitrarily well, given enough neurons in the hidden layers. However, Elman networks use simplified derivative calculations (using staticderiv, which ignores delayed connections) at the expense of less reliable learning.
elmannet(layerdelays, hiddenSizes, trainFcn) takes these arguments,

layerdelays	Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm ')

and returns an Elman neural network.

Examples

Here an Elman neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
```

```
net = elmannet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```


See Also

preparets | removedelay | timedelaynet | layrecnet | narnet | narxnet

errsurf

Error surface of single-input neuron

Syntax

errsurf ($\mathrm{P}, \mathrm{T}, \mathrm{WV}, \mathrm{BV}, \mathrm{F}$)

Description

errsurf($P, T, W V, B V, F)$ takes these arguments,

P	1-by-Q matrix of input vectors
T	1-by-Q matrix of target vectors
WV	Row vector of values of W
BV	Row vector of values of B
F	Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples

```
p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,es,[60 30])
```


See Also

plotes

extendts

Extend time series data to given number of timesteps

Syntax

extendts(x,ts,v)

Description

extendts $(x, t s, v)$ takes these values,

x	Neural network time series data
ts	Number of timesteps
v	Value

and returns the time series data either extended or truncated to match the specified number of timesteps. If the value v is specified, then extended series are filled in with that value, otherwise they are extended with random values.

Examples

Here, a 20 -timestep series is created and then extended to 25 timesteps with the value zero.
x = nndata(5,4,20);
y = extendts(x,25,0)

See Also

nndata | catsamples | preparets

feedforwardnet

Feedforward neural network

Syntax

feedforwardnet(hiddenSizes,trainFcn)

Description

Feedforward networks consist of a series of layers. The first layer has a connection from the network input. Each subsequent layer has a connection from the previous layer. The final layer produces the network's output.

Feedforward networks can be used for any kind of input to output mapping. A feedforward network with one hidden layer and enough neurons in the hidden layers, can fit any finite input-output mapping problem.

Specialized versions of the feedforward network include fitting (fitnet) and pattern recognition (patternnet) networks. A variation on the feedforward network is the cascade forward network (cascadeforwardnet) which has additional connections from the input to every layer, and from each layer to all following layers.
feedforwardnet(hiddenSizes, trainFcn) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes $($ default $=10)$
trainFcn	Training function (default = 'trainlm')

and returns a feedforward neural network.

Examples

Here a feedforward neural network is used to solve a simple problem.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
```

```
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
perf =
    1.4639e-04
```


See Also
 fitnet | patternnet | cascadeforwardnet

fitnet

Function fitting neural network

Syntax

fitnet(hiddenSizes,trainFcn)

Description

Fitting networks are feedforward neural networks (feedforwardnet) used to fit an input-output relationship.
fitnet(hiddenSizes, trainFcn) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm ')

and returns a fitting neural network.

Examples

Here a fitting neural network is used to solve a simple problem.

```
[x,t] = simplefit_dataset;
net = fitnet(10);
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
perf =
    1.4639e-04
```


See Also
feedforwardnet | nftool

fixunknowns

Process data by marking rows with unknown values

Syntax

```
[y,ps] = fixunknowns(X)
[y,ps] = fixunknowns(X,FP)
Y = fixunknowns('apply',X,PS)
X = fixunknowns('reverse',Y,PS)
name = fixunknowns('name')
fp = fixunknowns('pdefaults')
pd = fixunknowns('pdesc')
fixunknowns('pcheck',fp)
```


Description

fixunknowns processes matrices by replacing each row containing unknown values (represented by NaN) with two rows of information.

The first row contains the original row, with NaN values replaced by the row's mean. The second row contains 1 and 0 values, indicating which values in the first row were known or unknown, respectively.
[$y, p s]=$ fixunknowns(X) takes these inputs,

```
X Single N-by-Q matrix or a 1-by-TS row cell array of N-by-Q matrices
```

and returns

Y	Each M-by-Q matrix with M - N rows added (optional)
PS	Process settings that allow consistent processing of values

[y, ps] = fixunknowns(X,FP) takes an empty struct FP of parameters.
$Y=$ fixunknowns('apply', X, PS) returns Y, given X and settings $P S$.
$X=$ fixunknowns('reverse', $Y, P S$) returns X, given Y and settings PS.
name $=$ fixunknowns('name') returns the name of this process method.
$f p=$ fixunknowns('pdefaults') returns the default process parameter structure.
pd = fixunknowns('pdesc') returns the process parameter descriptions.
fixunknowns('pcheck', fp) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with a mixture of known and unknown values in its second row:

```
x1 = [1 2 3 4; 4 NaN 6 5; NaN 2 3 NaN]
[y1,ps] = fixunknowns(x1)
```

Next, apply the same processing settings to new values:

```
x2 = [4 5 3 2; NaN 9 NaN 2; 4 9 5 2]
y2 = fixunknowns('apply',x2,ps)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = fixunknowns('reverse',y1,ps)
```


Definitions

If you have input data with unknown values, you can represent them with NaN values. For example, here are five 2 -element vectors with unknown values in the first element of two of the vectors:

```
p1 = [1 NaN 3 2 NaN; 3 1 -1 2 4];
```

The network will not be able to process the NaN values properly. Use the function fixunknowns to transform each row with NaN values (in this case only the first row) into two rows that encode that same information numerically.

```
[p2,ps] = fixunknowns(p1);
```

Here is how the first row of values was recoded as two rows.
p2 $=$

1	2	3	2	2
1	0	1	1	0
3	1	-1	2	4

The first new row is the original first row, but with the mean value for that row (in this case 2) replacing all NaN values. The elements of the second new row are now either 1, indicating the original element was a known value, or 0 indicating that it was unknown. The original second row is now the new third row. In this way both known and unknown values are encoded numerically in a way that lets the network be trained and simulated.

Whenever supplying new data to the network, you should transform the inputs in the same way, using the settings ps returned by fixunknowns when it was used to transform the training input data.
p2new = fixunknowns('apply',p1new,ps);
The function fixunkowns is only recommended for input processing. Unknown targets represented by NaN values can be handled directly by the toolbox learning algorithms. For instance, performance functions used by backpropagation algorithms recognize NaN values as unknown or unimportant values.

See Also
mapminmax | mapstd | processpca

formwb

Form bias and weights into single vector

Syntax

formwb(net, b, IW, LW)

Description

formwb (net, b, IW, LW) takes a neural network and bias b, input weight IW, and layer weight LW values, and combines the values into a single vector.

Examples

Here a network is created, configured, and its weights and biases formed into a vector.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = configure(net,x,t);
wb = formwb(net,net.b,net.IW,net.LW)
```


See Also

getwb | setwb \| separatewb

fpderiv

Forward propagation derivative function

Syntax

fpderiv('dperf_dwb', net, X, T, Xi, Ai, EW)
fpderiv('de_dwb', net, X,T,Xi,Ai,EW)

Description

This function calculates derivatives using the chain rule from inputs to outputs, and in the case of dynamic networks, forward through time.
fpderiv('dperf_dwb', net, X, T,Xi,Ai, EW) takes these arguments,

net	Neural network
X	Inputs, an R-by-Q matrix (or N-by-TS cell array of Ri-by-Q matrices)
T	Targets, an S-by-Q matrix (or M-by-TS cell array of Si-by-Q matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (or N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
fpderiv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = fpderiv('dperf_dwb',net,x,t)
jwb = fpderiv('de_dwb',net,x,t)
```


See Also

bttderiv | defaultderiv | num2deriv | num5deriv | staticderiv

fromnndata

Convert data from standard neural network cell array form

Syntax

fromnndata(x,toMatrix,columnSample,cellTime)

Description

fromnndata(x,toMatrix,columnSample,cellTime) takes these arguments,

net	Neural network
toMatrix	True if result is to be in matrix form
columnSample	True if samples are to be represented as columns, false if rows
cellTime	True if time series are to be represented as a cell array, false if represented with a matrix

and returns the original data reformatted accordingly.

Examples

Here time-series data is converted from a matrix representation to standard cell array representation, and back. The original data consists of a 5 -by- 6 matrix representing one time-series sample consisting of a 5 -element vector over 6 timesteps arranged in a matrix with the samples as columns.

```
x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)
```

Here data is defined in standard neural network data cell form. Converting this data does not change it. The data consists of three time series samples of 2 -element signals over 3 timesteps.

```
x = {rands(2,3);rands(2,3);rands(2,3)}
columnSamples = true;
cellTime = true;
[y,wasMatrix] = tonndata(x)
x2 = fromnndata(y,wasMatrix,columnSamples)
```


See Also

tonndata

gadd

Generalized addition

Syntax

gadd (a, b)

Description

This function generalizes matrix addition to the addition of cell arrays of matrices combined in an element-wise fashion.
gadd (a, b) takes two matrices or cell arrays, and adds them in an element-wise manner.

Examples

Here matrix and cell array values are added.

```
gadd([1 2 3; 4 5 6],[10;20])
gadd({1 2; 3 4},{1 3; 5 2})
gadd({1 2 3 4},{10;20;30})
```


See Also

gsubtract | gdivide | gnegate | gsqrt | gmultiply

gdivide

Generalized division

Syntax

gdivide(a, b)

Description

This function generalizes matrix element-wise division to the division of cell arrays of matrices combined in an element-wise fashion.
gdivide (a, b) takes two matrices or cell arrays, and divides them in an element-wise manner.

Examples

Here matrix and cell array values are added.

```
gdivide([1 2 3; 4 5 6],[10;20])
gdivide({1 2; 3 4},{1 3; 5 2})
gdivide({1 2 3 4},{10;20;30})
```


See Also

```
gadd | gsubtract | gnegate | gsqrt | gmultiply
```


gensim

Generate Simulink block for neural network simulation

Syntax

gensim(net,st)

To Get Help

Type help network/gensim.

Description

gensim(net, st) creates a Simulink ${ }^{\circledR}$ system containing a block that simulates neural network net.
gensim(net, st) takes these inputs:

net	Neural network
st	Sample time (default =1)

and creates a Simulink system containing a block that simulates neural network net with a sampling time of st.

If net has no input or layer delays (net. numInputDelays and net. numLayerDelays are both 0), you can use -1 for st to get a network that samples continuously.

Examples

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t)
gensim(net)
```


genFunction

Generate MATLAB function for simulating neural network

Syntax

genFunction(net, pathname)
genFunction (\qquad ,'MatrixOnly', 'yes')
genFunction (__, 'ShowLinks', 'no')

Description

genFunction(net, pathname) generates a complete stand-alone MATLAB ${ }^{\circledR}$ function for simulating a neural network including all settings, weight and bias values, module functions, and calculations in one file. The result is a standalone MATLAB function file.

Generating a MATLAB neural network simulation function can help you to:

- Document the input-output transform of a neural network
- Generate C/C++ code with MATLAB Coder ${ }^{\text {TM }}$ codegen
- Generate efficient MEX functions with MATLAB Coder codegen
- Generate stand-alone C executables with MATLAB Compiler ${ }^{\text {TM }}$ mcc
- Generate C/C++ libraries with MATLAB Compiler mcc
- Generate Excel ${ }^{\circledR}$ and .COM components with MATLAB Builder ${ }^{\text {TM }}$ EX mcc options
- Generate Java ${ }^{\circledR}$ components with MATLAB Builder JA mcc options
- Generate .NET components with MATLAB Builder NE mcc options
genFunction(\qquad , 'MatrixOnly', 'yes') overrides the default cell/matrix notation and instead generates a function that uses only matrix arguments compatible with MATLAB Coder tools. For static networks, the matrix columns are interpreted as independent samples. For dynamic networks, the matrix columns are interpreted as a series of time steps. The default value is 'no'.
genFunction (\qquad , 'ShowLinks ', 'no') disables the default behavior of displaying links to generated help and source code. The default is 'yes'.

Examples

Create Functions from Static Neural Network

This example shows how to create a MATLAB function and a MEX-function from a static neural network.

First, train a static network and calculate its outputs for the training data.

```
[x,t] = house_dataset;
houseNet = feedforwardnet(10);
houseNet = train(houseNet,x,t);
y = houseNet(x);
```

Next, generate and test a MATLAB function. Then the new function is compiled to a shared/dynamically linked library with mcc.

```
genFunction(houseNet,'houseFcn');
y2 = houseFcn(x);
accuracy2 = max(abs(y-y2))
mcc -W lib:libHouse -T link:lib houseFcn
```

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function, which is also tested.

```
genFunction(houseNet,'houseFcn','MatrixOnly','yes');
y3 = houseFcn(x);
accuracy3 = max(abs(y-y3))
x1Type = coder.typeof(double(0),[13 Inf]); % Coder type of input 1
codegen houseFcn.m -config:mex -o houseCodeGen -args {x1Type}
y4 = houseCodeGen(x);
accuracy4 = max (abs (y-y4))
```


Create Functions from Dynamic Neural Network

This example shows how to create a MATLAB function and a MEX-function from a dynamic neural network.

First, train a dynamic network and calculate its outputs for the training data.

```
[x,t] = maglev_dataset;
maglevNet = narxnet(1:2,1:2,10);
[X,Xi,Ai,T] = preparets(maglevNet,x,{},t);
```

```
maglevNet = train(maglevNet,X,T,Xi,Ai);
[y,xf,af] = maglevNet(X,Xi,Ai);
```

Next, generate and test a MATLAB function. Use the function to create a shared/ dynamically linked library with mcc.

```
genFunction(maglevNet,'maglevFcn');
[y2,xf,af] = maglevFcn(X,Xi,Ai);
accuracy2 = max(abs(cell2mat(y)-cell2mat(y2)))
mcc -W lib:libMaglev -T link:lib maglevFcn
```

Next, generate another version of the MATLAB function that supports only matrix arguments (no cell arrays), and test the function. Use the MATLAB Coder tool codegen to generate a MEX-function, which is also tested.

```
genFunction(maglevNet,'maglevFcn','MatrixOnly','yes');
x1 = cell2mat(X(1,:)); % Convert each input to matrix
x2 = cell2mat (X(2,:));
xi1 = cell2mat(Xi(1,:)); % Convert each input state to matrix
xi2 = cell2mat(Xi(2,:));
[y3,xf1,xf2] = maglevFcn(x1,x2,xi1,xi2);
accuracy3 = max(abs(cell2mat(y) -y3))
x1Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 1
x2Type = coder.typeof(double(0),[1 Inf]); % Coder type of input 2
xi1Type = coder.typeof(double(0),[1 2]); % Coder type of input 1 states
xi2Type = coder.typeof(double(0),[1 2]); % Coder type of input 2 states
codegen maglevFcn.m -config:mex -o maglevNetCodeGen -args {x1Type x2Type xi1Type xi2Type}
[y4,xf1,xf2] = maglevNetCodeGen(x1,x2,xi1,xi2);
dynamic_codegen_accuracy = max(abs(cell2mat (y)-y4))
```


Input Arguments

net - neural network

network object
Neural network, specified as a network object.
Example: net = feedforwardnet(10);

pathname - location and name of generated function file
 (default) | character string

Location and name of generated function file, specified as a character string. If you do not specify a file name extension of .m, it is automatically appended. If you do not specify a path to the file, the default location is the current working folder.

Example: 'myFcn.m'
Data Types: char

See Also

gensim

getelements

Get neural network data elements

Syntax

getelements(x,ind)

Description

getelements (x, ind) returns the elements of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind rows of x.
If x is a cell array, the result is a cell array with as many columns as x , whose elements $(1, i)$ are matrices containing the ind rows of $[x\{:, i\}]$.

Examples

This code gets elements 1 and 3 from matrix data:

```
x = [1 2 3; 4 7 4]
y = getelements(x,[1 3])
```

This code gets elements 1 and 3 from cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getelements(x,[1 3])
```


See Also

nndata | numelements | setelements | catelements | getsamples | gettimesteps| getsignals

getsamples

Get neural network data samples

Syntax

getsamples(x,ind)

Description

getsamples(x, ind) returns the samples of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, the result is the ind columns of x.
If x is a cell array, the result is a cell array the same size as x, whose elements are the ind columns of the matrices in x.

Examples

This code gets samples 1 and 3 from matrix data:

```
x = [1 2 3; 4 7 4]
y = getsamples(x,[1 3])
```

This code gets elements 1 and 3 from cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
y = getsamples(x,[1 3])
```


See Also

nndata | numsamples | setsamples | catsamples | getelements | gettimesteps | getsignals

getsignals

Get neural network data signals

Syntax

getsignals(x,ind)

Description

getsignals(x, ind) returns the signals of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind may only be 1 , which will return x, or [] which will return an empty matrix.

If x is a cell array, the result is the ind rows of x.

Examples

This code gets signal 2 from cell array data:
$x=\{[1: 3 ; 4: 6][7: 9 ; 10: 12] ;[13: 15][16: 18]\}$
$y=$ getsignals($x, 2$)

See Also

nndata | numsignals | setsignals | catsignals | getelements | getsamples | gettimesteps

getsiminit

Get Simulink neural network block initial input and layer delays states

Syntax

[xi,ai] = getsiminit(sysName,netName,net)

Description

[xi,ai] = getsiminit(sysName,netName,net) takes these arguments,

sysName	The name of the Simulink system containing the neural network block
netName	The name of the Simulink neural network block
net	The original neural network

and returns,

xi	Initial input delay states
ai	Initial layer delay states

Examples

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```
[x,t] = simplenarx_dataset;
    net = narxnet(1:2,1:2,20);
    view(net)
    [xs,xi,ai,ts] = preparets(net,x,{},t);
    net = train(net,xs,ts,xi,ai);
    y = net(xs,xi,ai);
```

Now the network is converted to closed-loop, and the data is reformatted to simulate the network's closed-loop response.

```
net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);
```

Here the network is converted to a Simulink system with workspace input and output ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

```
[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName, netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);
```

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical to the values set with setsiminit.)
[xi,ai] = getsiminit(sysName,netName,net);

See Also

gensim | setsiminit | nndata2sim | sim2nndata

gettimesteps

Get neural network data timesteps

Syntax

gettimesteps(x,ind)

Description

gettimesteps (x, ind) returns the timesteps of neural network data x indicated by the indices ind. The neural network data may be in matrix or cell array form.

If x is a matrix, ind can only be 1 , which will return x; or [], which will return an empty matrix.

If x is a cell array the result is the ind columns of x.

Examples

This code gets timestep 2 from cell array data:
$x=\{[1: 3 ; 4: 6][7: 9 ; 10: 12] ;[13: 15][16: 18]\}$
y = gettimesteps(x,2)

```
See Also
nndata | numtimesteps | settimesteps | cattimesteps | getelements | getsamples | getsignals
```


getwb

Get network weight and bias values as single vector

Syntax

```
getwb(net)
```


Description

getwb (net) returns a neural network's weight and bias values as a single vector.

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values are formed into a vector.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = getwb(net)
```


See Also

setwb | formwb | separatewb

gmultiply

Generalized multiplication

Syntax

gmultiply(a, b)

Description

This function generalizes matrix multiplication to the multiplication of cell arrays of matrices combined in an element-wise fashion.
gmultiply (a, b) takes two matrices or cell arrays, and multiplies them in an elementwise manner.

Examples

Here matrix and cell array values are added.
gmultiply([1 2 3; 4 5 6],[10;20])
gmultiply(\{1 2; 3 4\},\{1 3; 5 2\})
gmultiply(\{1 234$\},\{10 ; 20 ; 30\})$

See Also

gadd | gsubtract | gdivide | gnegate | gsqrt

gnegate

Generalized negation

Syntax

gnegate(x)

Description

This function generalizes matrix negation to the negation of cell arrays of matrices combined in an element-wise fashion.
gnegate (x) takes a matrix or cell array of matrices, and negates the matrices.

Examples

Here is an example of negating a cell array:

```
x = {[1 2; 3 4],[1 3; 5 2]};
y = gnegate(x);
y{1}, y{2}
```


See Also

gadd | gsubtract | gsqrt | gdivide | gmultiply

gpu2nndata

Reformat neural data back from GPU

Syntax

X = gpu2nndata(Y, Q)
$X=$ gpu2nndata(Y)
X = gpu2nndata(Y,Q,N,TS)

Description

Training and simulation of neural networks require that matrices be transposed. But they do not require (although they are more efficient with) padding of column length so that each column is memory aligned. This function copies data back from the current GPU and reverses this transform. It can be used on data formatted with nndata2gpu or on the results of network simulation.
X = gpu2nndata (Y, Q) copies the $Q Q-$ by-N gpuArray Y into $R A M$, takes the first Q rows and transposes the result to get an N-by- Q matrix representing $Q N$-element vectors.
$X=$ gpu2nndata (Y) calculates Q as the index of the last row in Y that is not all NaN values (those rows were added to pad Y for efficient GPU computation by nndata2gpu). Y is then transformed as before.
$X=$ gpu2nndata($\mathrm{Y}, \mathrm{Q}, \mathrm{N}, \mathrm{TS}$) takes a $Q Q-$-by-($\mathrm{N} * \mathrm{TS}$) gpuArray where N is a vector of signal sizes, Q is the number of samples (less than or equal to the number of rows after alignment padding $Q Q$), and TS is the number of time steps.

The gpuArray Y is copied back into RAM, the first Q rows are taken, and then it is partitioned and transposed into an M-by-TS cell array, where M is the number of elements in N. Each Y\{i,ts \} is an $N(i)$-by-Q matrix.

Examples

Copy a matrix to the GPU and back:

```
x = rand (5,6)
[y,q] = nndata2gpu(x)
x2 = gpu2nndata(y,q)
```

Copy from the GPU a neural network cell array data representing four time series, each consisting of five time steps of 2 -element and 3 -element signals.

```
x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)
```


See Also

nndata2gpu

gridtop

Grid layer topology function

Syntax

gridtop(dim1, dim2, ..., dimN)

Description

pos $=$ gridtop calculates neuron positions for layers whose neurons are arranged in an N -dimensional grid.
gridtop (dim1, dim2, ..., dimN) takes N arguments,

dimi	Length of layer in dimension i

and returns an N -by-S matrix of N coordinate vectors where S is the product of dim1*dim2*...*dimN.

Examples

This code uses gridtop to directly create a two-dimensional layer with 40 neurons arranged in an 8 -by- 5 grid; then uses the function as an input to selforgmap to create weight positions of neurons for a self-organizing map and plots the neuron topology.

```
pos = gridtop(8,5);
net = selforgmap([8 5],'topologyFcn','gridtop');
plotsomtop(net)
```


See Also

hextop | randtop | tritop

gsqrt

Generalized square root

Syntax

```
gsqrt(x)
```


Description

This function generalizes matrix element-wise square root to the square root of cell arrays of matrices combined in an element-wise fashion.
gsqrt (x) takes a matrix or cell array of matrices, and takes the element-wise square root of the matrices.

Examples

Here is an example of taking the element-wise square root of a cell array:
gsqrt(\{1 2; 34$\},\{13 ; 52\})$

See Also
gadd | gsubtract | gnegate | gdivide | gmultiply

gsubtract

Generalized subtraction

Syntax

gsubtract(a,b)

Description

This function generalizes matrix subtraction to the subtraction of cell arrays of matrices combined in an element-wise fashion.
gsubtract (a, b) takes two matrices or cell arrays, and subtracts them in an elementwise manner.

Examples

Here matrix and cell array values are added.

```
gsubtract([1 2 3; 4 5 6],[10;20])
gsubtract({1 2; 3 4},{1 3; 5 2})
gsubtract({1 2 3 4},{10;20;30})
```


See Also

gadd | gmultiply | gdivide | gnegate | gsqrt

hardlim

Hard-limit transfer function

Graph and Symbol

$a=\operatorname{hardlim}(n)$
Hard-Limit Transfer Function

Syntax

A = hardlim(N,FP)

Description

hardlim is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{hardlim}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by- Q Boolean matrix with 1 s where $N \geq 0$.
info $=$ hardlim('code') returns information according to the code string specified:
hardlim('name') returns the name of this function.
hardlim('output', FP) returns the [min max] output range.
hardlim('active', FP) returns the [min max] active input range.
hardlim('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
hardlim('fpnames') returns the names of the function parameters.
hardlim('fpdefaults') returns the default function parameters.

Examples

Here is how to create a plot of the hardlim transfer function.

```
n = -5:0.1:5;
a = hardlim(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'hardlim';
```


More About

Algorithms

```
hardlim(n)=1 if n\geq0
    0 otherwise
```

See Also
sim | hardlims

hardlims

Symmetric hard-limit transfer function

Graph and Symbol

$$
a=\operatorname{hardlims}(n)
$$

Symmetric Hard-Limit Transfer Function

Syntax

$\mathrm{A}=\operatorname{hardlims}(\mathrm{N}, \mathrm{FP})$

Description

hardlims is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=$ hardlims ($N, F P$) takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by- $Q+1 /-1$ matrix with +1 s where $N \geq 0$.
info $=$ hardlims('code') returns information according to the code string specified:
hardlims('name') returns the name of this function.
hardlims('output', FP) returns the [min max] output range.
hardlims('active', FP) returns the [min max] active input range.
hardlims('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
hardlims('fpnames') returns the names of the function parameters.
hardlims('fpdefaults') returns the default function parameters.

Examples

Here is how to create a plot of the hardlims transfer function.

```
n = -5:0.1:5;
a = hardlims(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'hardlims';
```


More About

Algorithms

hardlims(n) $=1$ if $n \geq 0,-1$ otherwise.

See Also

sim | hardlim

hextop

Hexagonal layer topology function

Syntax

```
hextop(dim1,dim2,...,dimN)
```


Description

hextop calculates the neuron positions for layers whose neurons are arranged in an N dimensional hexagonal pattern.
hextop(dim1, dim2, ..., dimN) takes N arguments,

dimi \quad Length of layer in dimension i

and returns an N -by-S matrix of N coordinate vectors where S is the product of dim1*dim2*...*dimN.

Examples

This code creates and displays a two-dimensional layer with 40 neurons arranged in an 8 -by- 5 hexagonal pattern.

```
pos = hextop(8,5);
net = selforgmap([8 5],'topologyFcn','hextop');
plotsomtop(net)
```

```
See Also
gridtop | randtop | tritop
```


ind2vec

Convert indices to vectors

Syntax

ind2vec(ind)
ind2vec(ind,N)

Description

ind2vec and vec2ind allow indices to be represented either by themselves, or as vectors containing a 1 in the row of the index they represent.
ind2vec (ind) takes one argument,

```
ind 
```

and returns a sparse matrix of vectors, with one 1 in each column, as indicated by ind.
ind2vec (ind, N) returns an N-by-M matrix, where N can be equal to or greater than the maximum index.

Examples

Here four indices are defined and converted to vector representation.

```
ind = [1 3 2 3];
vec = ind2vec(ind)
vec =
\begin{tabular}{ll}
\((1,1)\) & 1 \\
\((3,2)\) & 1 \\
\((2,3)\) & 1 \\
\((3,4)\) & 1
\end{tabular}
```

Here a vector with all zeros in the last row is converted to indices and back, while preserving the number of rows.

```
vec =[[0 0 1 0; 1 0 0 0; 0 1 0 0
vec =
    0
    1 0
    0 0 0
[ind,n] = vec2ind(vec)
ind =
    3 1 2
n =
    4
vec2 = full(ind2vec(ind, n))
vec2 =
    0
    1 0}
    0 0 0
```


See Also

vec2ind | sub2ind | ind2sub

init

Initialize neural network

Syntax

```
net = init(net)
```


To Get Help

Type help network/init.

Description

net $=$ init (net) returns neural network net with weight and bias values updated according to the network initialization function, indicated by net.initFcn, and the parameter values, indicated by net.initParam.

Examples

Here a perceptron is created, and then configured so that its input, output, weight, and bias dimensions match the input and target data.

```
x = [0 1 0 1; 0 0 1 1];
t = [0 0 0 1];
net = perceptron;
net = configure(net,x,t);
net.iw{1,1}
net.b{1}
```

Training the perceptron alters its weight and bias values.

```
net = train(net, x, t);
net.iw{1,1}
net.b{1}
```

init reinitializes those weight and bias values.

```
net = init(net);
net.iw{1,1}
net.b{1}
```

The weights and biases are zeros again, which are the initial values used by perceptron networks.

More About

Algorithms

init calls net.initFcn to initialize the weight and bias values according to the parameter values net.initParam.

Typically, net.initFcn is set to 'initlay', which initializes each layer's weights and biases according to its net.layers\{i\}.initFcn.

Backpropagation networks have net.layers\{i\}.initFcn set to 'initnw', which calculates the weight and bias values for layer i using the Nguyen-Widrow initialization method.

Other networks have net.layers\{i\}.initFcn set to 'initwb', which initializes each weight and bias with its own initialization function. The most common weight and bias initialization function is rands, which generates random values between -1 and 1 .

See Also

sim | adapt | train | initlay | initnw | initwb | rands | revert

initcon

Conscience bias initialization function

Syntax

initcon (S,PR)

Description

initcon is a bias initialization function that initializes biases for learning with the learncon learning function.
initcon (S, PR) takes two arguments,

S	Number of rows (neurons)
PR	R-by-2 matrix of $R=[$ Pmin Pmax $]$ (default $\left.=\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$

and returns an S-by-1 bias vector.
Note that for biases, R is always 1 . initcon could also be used to initialize weights, but it is not recommended for that purpose.

Examples

Here initial bias values are calculated for a five-neuron layer.

```
b = initcon(5)
```


Network Use

You can create a standard network that uses initcon to initialize weights by calling competlayer.

To prepare the bias of layer i of a custom network to initialize with initcon,

1 Set net.initFcn to 'initlay '. (net.initParam automatically becomes
initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set net.biases\{i\}.initFcn to 'initcon'.
To initialize the network, call init.

More About

Algorithms

learncon updates biases so that each bias value $b(i)$ is a function of the average output c(i) of the neuron i associated with the bias.
initcon gets initial bias values by assuming that each neuron has responded to equal numbers of vectors in the past.

```
See Also
competlayer | init | initlay | initwb | learncon
```


initlay

Layer-by-layer network initialization function

Syntax

```
net = initlay(net)
info = initlay('code')
```


Description

initlay is a network initialization function that initializes each layer i according to its own initialization function net. layers\{i\}.initFcn.
net $=$ initlay (net) takes
net \quad Neural network
and returns the network with each layer updated.
info = initlay('code') returns useful information for each supported code string:

'pnames '	Names of initialization parameters
'pdefaults '	Default initialization parameters

initlay does not have any initialization parameters.

Network Use

You can create a standard network that uses initlay by calling feedforwardnet, cascadeforwardnet, and many other network functions.

To prepare a custom network to be initialized with initlay,
1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.

2 Set each net. layers \{i\}.initFcn to a layer initialization function. (Examples of such functions are initwb and initnw.)

To initialize the network, call init.

More About

Algorithms

The weights and biases of each layer i are initialized according to net.layers\{i\}.initFcn.

See Also

cascadeforwardnet | init | initnw | initwb | feedforwardnet

initlvq

LVQ weight initialization function

Syntax

```
initlvq('configure',x)
initlvq('configure',net,'IW',i,j,settings)
initlvq('configure',net,'LW',i,j,settings)
initlvq('configure',net,'b',i,)
```


Description

initlvq('configure',x) takes input data x and returns initialization settings for an LVQ weights associated with that input.
initlvq('configure', net,'IW',i,j, settings) takes a network, and indices indicating an input weight to layer i from input j, and that weights settings, and returns new weight values.
initlvq('configure', net, 'LW', i, j, settings) takes a network, and indices indicating a layer weight to layer i from layer j, and that weights settings, and returns new weight values.
initlvq('configure', net,'b',i,) takes a network, and an index indicating a bias for layer i, and returns new bias values.

See Also

lvqnet | init

initnw

Nguyen-Widrow layer initialization function

Syntax

```
net = initnw(net,i)
```


Description

initnw is a layer initialization function that initializes a layer's weights and biases according to the Nguyen-Widrow initialization algorithm. This algorithm chooses values in order to distribute the active region of each neuron in the layer approximately evenly across the layer's input space. The values contain a degree of randomness, so they are not the same each time this function is called.
initnw requires that the layer it initializes have a transfer function with a finite active input range. This includes transfer functions such as tansig and satlin, but not purelin, whose active input range is the infinite interval [-inf, inf]. Transfer functions, such as tansig, will return their active input range as follows:

```
activeInputRange = tansig('active')
activeInputRange =
    -2 2
net = initnw(net,i) takes two arguments,
```

net	Neural network
i	Index of a layer

and returns the network with layer i's weights and biases updated.
There is a random element to Nguyen-Widrow initialization. Unless the default random generator is set to the same seed before each call to initnw, it will generate different weight and bias values each time.

Network Use

You can create a standard network that uses initnw by calling feedforwardnet or cascadeforwardnet.

To prepare a custom network to be initialized with initnw,
1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.

2 Set net.layers\{i\}.initFcn to 'initnw'.

To initialize the network, call init.

More About

Algorithms

The Nguyen-Widrow method generates initial weight and bias values for a layer so that the active regions of the layer's neurons are distributed approximately evenly over the input space.

Advantages over purely random weights and biases are

- Few neurons are wasted (because all the neurons are in the input space).
- Training works faster (because each area of the input space has neurons). The Nguyen-Widrow method can only be applied to layers
- With a bias
- With weights whose weightFcn is dotprod
- With netInputFen set to netsum
- With transferFcn whose active region is finite

If these conditions are not met, then initnw uses rands to initialize the layer's weights and biases.

```
See Also
cascadeforwardnet | init | initlay | initwb | feedforwardnet
```


initwb

By weight and bias layer initialization function

Syntax

```
initwb(net,i)
```


Description

initwb is a layer initialization function that initializes a layer's weights and biases according to their own initialization functions.
initwb(net,i) takes two arguments,

net	Neural network
i	Index of a layer

and returns the network with layer i's weights and biases updated.

Network Use

You can create a standard network that uses initwb by calling perceptron or linearlayer.

To prepare a custom network to be initialized with initwb,
1 Set net.initFcn to 'initlay'. This sets net.initParam to the empty matrix [], because initlay has no initialization parameters.
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights $\{i, j\}$.initFcn to a weight initialization function. Set each net.layerWeights $\{i, j\}$.initFcn to a weight initialization function. Set each net.biases\{i\}. initFcn to a bias initialization function. (Examples of such functions are rands and midpoint.)

To initialize the network, call init.

More About

Algorithms

Each weight (bias) in layer i is set to new values calculated according to its weight (bias) initialization function.

See Also
init | initlay | initnw | linearlayer | perceptron

initzero

Zero weight and bias initialization function

Syntax

```
W = initzero(S,PR)
b = initzero(S,[1 1])
```


Description

W = initzero (S, PR) takes two arguments,

S	Number of rows (neurons)
PR	R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R weight matrix of zeros.

Examples

Here initial weights and biases are calculated for a layer with two inputs ranging over [0 1] and [-2 2] and four neurons.

```
W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])
```


Nełwork Use

You can create a standard network that uses initzero to initialize its weights by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be initialized with midpoint,

1 Set net.initFcn to 'initlay'. (net. initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'initzero'.
4 Set each net.layerWeights\{i,j\}.initFcn to 'initzero'.
5 Set each net.biases\{i\}.initFcn to 'initzero'.
To initialize the network, call init.
See help newp and help newlin for initialization examples.

See Also

initwb | initlay | init

isconfigured

Indicate if network inputs and outputs are configured

Syntax

[flag,inputflags,outputflags] = isconfigured(net)

Description

[flag,inputflags,outputflags] = isconfigured(net) takes a neural network and returns three values,

flag	True if all network inputs and outputs are configured (have non-zero sizes)
inputflags	Vector of true/false values for each configured/unconfigured input
outputflags	Vector of true/false values for each configured/unconfigured output

Examples

Here are the flags returned for a new network before and after being configured:

```
net = feedforwardnet;
[flag,inputFlags,outputFlags] = isconfigured(net)
[x,t] = simplefit_dataset;
net = configure(net,x,t);
[flag,inputFlags,outputFlags] = isconfigured(net)
```

See Also
configure | unconfigure

layrecnet

Layer recurrent neural network

Syntax

layrecnet(layerDelays,hiddenSizes,trainFcn)

Description

Layer recurrent neural networks are similar to feedforward networks, except that each layer has a recurrent connection with a tap delay associated with it. This allows the network to have an infinite dynamic response to time series input data. This network is similar to the time delay (timedelaynet) and distributed delay (distdelaynet) neural networks, which have finite input responses.
layrecnet(layerDelays, hiddenSizes,trainFcn) takes these arguments,

layerDelays	Row vector of increasing 0 or positive delays (default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes (default = 10)
trainFcn	Training function (default = 'trainlm ' $)$

and returns a layer recurrent neural network.

Examples

Use a layer recurrent neural network to solve a simple time series problem:

```
[X,T] = simpleseries_dataset;
net = layrecnet(1:2,-10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Y,Ts)
```


See Also

preparets | removedelay | distdelaynet | timedelaynet | narnet | narxnet

learncon

Conscience bias learning function

Syntax

[dB,LS] = learncon(B, P, Z,N,A,T,E,gW,gA,D,LP,LS)
info = learncon('code')

Description

learncon is the conscience bias learning function used to increase the net input to neurons that have the lowest average output until each neuron responds approximately an equal percentage of the time.
[dB,LS] = learncon(B, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

B	S-by-1 bias vector
P	1-by-Q ones vector
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=\quad[\quad]$
LS	Learning state, initially should be $=[$]

and returns

$d B$	S-by-1 weight (or bias) change matrix

LS	New learning state

Learning occurs according to learncon's learning parameter, shown here with its default value.

LP. lr - 0.001	Learning rate

info $=$ learncon('code') returns useful information for each supported code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Neural Network Toolbox 2.0 compatibility: The LP. Ir described above equals 1 minus the bias time constant used by trainc in the Neural Network Toolbox 2.0 software.

Examples

Here you define a random output A and bias vector W for a layer with three neurons. You also define the learning rate LR.

```
a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;
```

Because learncon only needs these values to calculate a bias change (see "Algorithm" below), use them to do so.

```
dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the bias of layer i of a custom network to learn with learncon,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set net.inputWeights\{i\}.learnFcn to 'learncon'
4 Set each net.layerWeights $\{\mathrm{i}, \mathrm{j}\} . \mathrm{learnFcn}$ to 'learncon'. . (Each weight learning parameter property is automatically set to learncon's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

More About

Algorithms

learncon calculates the bias change db for a given neuron by first updating each neuron's conscience, i.e., the running average of its output:
$c=(1-l r) * c+l r * a$
The conscience is then used to compute a bias for the neuron that is greatest for smaller conscience values.
$b=\exp (1-\log (c))-b$
(learncon recovers C from the bias values each time it is called.)

See Also
learnk | learnos | adapt | train

learngd

Gradient descent weight and bias learning function

Syntax

[dW,LS] = learngd(W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learngd('code')

Description

learngd is the gradient descent weight and bias learning function.
[dW,LS] = learngd(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs:

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q output gradient with respect to performance x Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be []

and returns

dW	S-by-R weight (or bias) change matrix

LS	New learning state

Learning occurs according to learngd's learning parameter, shown here with its default value.

LP.lr - 0.01	Learning rate

info = learngd('code') returns useful information for each supported code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random gradient gW for a weight going to a layer with three neurons from an input with two elements. Also define a learning rate of 0.5.

```
gW = rand(3,2);
lp.lr = 0.5;
```

Because learngd only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])
```


Network Use

You can create a standard network that uses learngd with newff, newcf, or newelm. To prepare the weights and the bias of layer i of a custom network to adapt with learngd,

1 Set net.adaptFen to 'trains'. net.adaptParam automatically becomes trains's default parameters.

2 Set each net.inputWeights\{i,j\}.learnFcn to 'learngd'.
Set each net.layerWeights\{i,j\}.learnFcn to 'learngd'. Set
net. biases $\{\mathrm{i}\} . \mathrm{l}^{2} \mathrm{earnFcn}$ to ' learngd '. Each weight and bias learning parameter property is automatically set to learngd's default parameters.

To allow the network to adapt,
1 Set net.adaptParam properties to desired values.
2 Call adapt with the network.
See help newff or help newcf for examples.

More About

Algorithms

learngd calculates the weight change $d W$ for a given neuron from the neuron's input P and error E , and the weight (or bias) learning rate LR, according to the gradient descent $\mathrm{d} w=l r * g W$.

See Also

adapt | learngdm | train

learngdm

Gradient descent with momentum weight and bias learning function

Syntax

[dW,LS] = learngdm(W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learngdm('code')

Description

learngdm is the gradient descent with momentum weight and bias learning function.
[dW, LS] = learngdm(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, Q)$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learngdm's learning parameters, shown here with their default values.

LP. lr - 0.01	Learning rate
LP.mc - 0.9	Momentum constant

info = learngdm('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random gradient G for a weight going to a layer with three neurons from an input with two elements. Also define a learning rate of 0.5 and momentum constant of 0.8 :

```
gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;
```

Because learngdm only needs these values to calculate a weight change (see "Algorithm" below), use them to do so. Use the default initial learning state.

```
ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)
```

learngdm returns the weight change and a new learning state.

Network Use

You can create a standard network that uses learngdm with newff, newcf, or newelm.
To prepare the weights and the bias of layer i of a custom network to adapt with learngdm,

1 Set net.adaptFcn to 'trains'. net.adaptParam automatically becomes trains's default parameters.

2 Set each net.inputWeights $\{i, j\} . l e a r n F c n$ to 'learngdm'. Set each net.layerWeights\{i,j\}.learnFcn to 'learngdm'. Set net. biases\{i\}.learnFcn to 'learngdm'. Each weight and bias learning parameter property is automatically set to learngdm's default parameters.

To allow the network to adapt,
1 Set net.adaptParam properties to desired values.
2 Call adapt with the network.
See help newff or help newcf for examples.

More About

Algorithms

learngdm calculates the weight change $d W$ for a given neuron from the neuron's input P and error E, the weight (or bias) W, learning rate LR, and momentum constant MC, according to gradient descent with momentum:

```
dW = mc*dWprev + (1-mc)*lr*gW
```

The previous weight change dWprev is stored and read from the learning state LS.

See Also

adapt | learngd | train

learnh

Hebb weight learning rule

Syntax

[dW,LS] = learnh(W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learnh('code')

Description

learnh is the Hebb weight learning function.
[dW, LS] = learnh(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[$]

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnh's learning parameter, shown here with its default value.

LP.lr -0.01	Learning rate

info = learnh('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and output A for a layer with a two-element input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;
```

Because learnh only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnh,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights $\{i, j\} . l e a r n F c n$ to 'learnh'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnh'. (Each weight learning parameter property is automatically set to learnh's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

More About

Algorithms

learnh calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the Hebb learning rule:

```
dw = lr*a*p'
```


References

Hebb, D.O., The Organization of Behavior, New York, Wiley, 1949

See Also
learnhd | adapt | train

learnhd

Hebb with decay weight learning rule

Syntax

[dW,LS] = learnhd (W, P, Z, N, A, T, E, gW, gA, D, LP, LS) info = learnhd('code')

Description

learnhd is the Hebb weight learning function.
[dW, LS] = learnhd(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[$]

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnhd's learning parameters, shown here with default values.

LP.dr -0.01	Decay rate
LP.lr -0.1	Learning rate

info $=$ learnhd('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P , output A , and weights W for a layer with a two-element input and three neurons. Also define the decay and learning rates.

```
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;
```

Because learnhd only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network to learn with learnhd,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net.adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnhd'.
4 Set each net.layerWeights $\{\mathrm{i}, \mathrm{j}\} . \mathrm{learnFcn}$ to 'learnhd'. (Each weight learning parameter property is automatically set to learnhd's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Calltrain (adapt).

More About

Algorithms

learnhd calculates the weight change dW for a given neuron from the neuron's input P , output A, decay rate DR, and learning rate LR according to the Hebb with decay learning rule:

```
dw = lr*a*p' - dr*w
```


See Also

learnh | adapt | train

learnis

Instar weight learning function

Syntax

[dW,LS] = learnis(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) info = learnis('code')

Description

learnis is the instar weight learning function.
[dW,LS] = learnis(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[$]

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnis's learning parameter, shown here with its default value.

LP. lr - 0.01	Learning rate

info = learnis('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because learnis only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights and the bias of layer i of a custom network so that it can learn with learnis,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnis'.

4 Set each net.layerWeights $\{\mathrm{i}, \mathrm{j}\} . \mathrm{learnFcn}$ to 'learnis'. (Each weight learning parameter property is automatically set to learnis's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (net.adaptParam) properties to desired values.
2 Call train (adapt).

More About

Algorithms

learnis calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the instar learning rule:

```
dw = lr*a*(p'-w)
```


References

Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
learnk | learnos | adapt | train

learnk

Kohonen weight learning function

Syntax

```
[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
```

info = learnk('code')

Description

learnk is the Kohonen weight learning function.
[dW, LS] = learnk(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnk's learning parameter, shown here with its default value.

LP.lr - 0.01	Learning rate

info = learnk('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because learnk only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Network Use

To prepare the weights of layer i of a custom network to learn with learnk,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnk'.
4 Set each net.layerWeights $\{\mathrm{i}, \mathrm{j}\} . \mathrm{learnFcn}$ to 'learnk'. (Each weight learning parameter property is automatically set to learnk's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

More About

Algorithms

learnk calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, and learning rate LR according to the Kohonen learning rule:
$d w=l r^{*}\left(p^{\prime}-w\right)$, if a $\sim=0 ;=0$, otherwise

References

Kohonen, T., Self-Organizing and Associative Memory, New York, Springer-Verlag, 1984

See Also
learnis | learnos | adapt | train

learnlv 1

LVQ1 weight learning function

Syntax

[dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) info = learnlv1('code')

Description

learnlv1 is the LVQ1 weight learning function.
[dW, LS] = learnlv1(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, Q)$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnlv1's learning parameter, shown here with its default value.

LP.lr - 0.01	Learning rate

info = learnlv1('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, weight matrix W, and output gradient gA for a layer with a two-element input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;
```

Because learnlv1 only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])
```


Network Use

You can create a standard network that uses learnlv1 with lvqnet. To prepare the weights of layer i of a custom network to learn with learnlv1,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights $\{\mathrm{i}, \mathrm{j}\} . \mathrm{learnFcn}$ to 'learnlv1'.

4 Set each net.layerWeights $\{\mathrm{i}, \mathrm{j}\} . \operatorname{learnFcn}$ to 'learnlv1'. (Each weight learning parameter property is automatically set to learnlv1's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

More About

Algorithms

learnlv1 calculates the weight change $d W$ for a given neuron from the neuron's input P, output A, output gradient gA, and learning rate LR, according to the LVQ1 rule, given i , the index of the neuron whose output a(i) is 1 :

$$
d w(i,:)=+l r^{*}(p-w(i,:)) \text { if } g A(i)=0 ;=-l r^{*}(p-w(i,:)) \text { if } g A(i)=-1
$$

See Also

learnlv2 | adapt | train

learnlv2

LVQ2.1 weight learning function

Syntax

[dW,LS] = learnlv2(W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learnlv2('code')

Description

learnlv2 is the LVQ2 weight learning function.
[dW, LS] = learnlv2(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R weight gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[$]

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnlv2's learning parameter, shown here with its default value.

LP. lr - 0.01	Learning rate
LP. window - 0.25	Window size (0 to 1, typically 0.2 to 0.3$)$

info = learnlv2('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a sample input P, output A, weight matrix W, and output gradient gA for a layer with a two-element input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;
```

Because learnlv2 only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])
```


Network Use

You can create a standard network that uses learnlv2 with lvqnet.
To prepare the weights of layer i of a custom network to learn with learnlv2,
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)

2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnlv2'.
4 Set each net.layerWeights $\{i, j\} . l e a r n F c n$ to 'learnlv2'. (Each weight learning parameter property is automatically set to learnlv2's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties as desired.
2 Call train (or adapt).

More About

Algorithms

learnlv2 implements Learning Vector Quantization 2.1, which works as follows:
For each presentation, if the winning neuron i should not have won, and the runnerup j should have, and the distance di between the winning neuron and the input p is roughly equal to the distance $d j$ from the runnerup neuron to the input p according to the given window,

```
min(di/dj, dj/di) > (1-window)/(1+window)
```

then move the winning neuron i weights away from the input vector, and move the runnerup neuron j weights toward the input according to
$d w(i,:)=-l p . l r^{*}\left(p^{\prime}-w(i,:)\right)$
$d w(j,:)=+l p . l r^{*}\left(p^{\prime}-w(j,:)\right)$

See Also
 learnlv1| adapt | train

learnos

Outstar weight learning function

Syntax

[dW, LS] = learnos(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) info = learnos('code')

Description

learnos is the outstar weight learning function.
[dW,LS] = learnos(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=\quad[\quad]$
LS	Learning state, initially should be $=[$]

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnos's learning parameter, shown here with its default value.

LP.lr - 0.01	Learning rate

info = learnos('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a twoelement input and three neurons. Also define the learning rate LR.

```
p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;
```

Because learnos only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])
```


Nełwork Use

To prepare the weights and the bias of layer i of a custom network to learn with learnos,

1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)

3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnos'.

4 Set each net.layerWeights $\{\mathrm{i}, \mathrm{j}\} . \mathrm{learnFcn}$ to 'learnos'. (Each weight learning parameter property is automatically set to learnos's default parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).

More About

Algorithms

learnos calculates the weight change dW for a given neuron from the neuron's input P , output A, and learning rate LR according to the outstar learning rule:

```
dw = lr*(a-w)*p'
```


References

Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland, Reidel Press, 1982

See Also
learnis | learnk | adapt | train

learnp

Perceptron weight and bias learning function

Syntax

[dW,LS] = learnp(W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learnp('code')

Description

learnp is the perceptron weight/bias learning function.
[dW, LS] = learnp(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or b, and S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[$]

and returns

dW	S-by-R weight (or bias) change matrix
LS	New learning state

info = learnp('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons.

```
p = rand(2,1);
e = rand(3,1);
```

Because learnp only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])
```


Network Use

You can create a standard network that uses learnp with newp.
To prepare the weights and the bias of layer i of a custom network to learn with learnp,
1 Set net.trainFcn to 'trainb'. (net.trainParam automatically becomes trainb's default parameters.)
2 Set net. adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights $\{i, j\} . l e a r n F c n$ to 'learnp'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnp'.
5 Set net.biases\{i\}.learnFcn to 'learnp'. (Each weight and bias learning parameter property automatically becomes the empty matrix, because learnp has no learning parameters.)

To train the network (or enable it to adapt),

1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).
See help newp for adaption and training examples.

More About

Algorithms

learnp calculates the weight change $d W$ for a given neuron from the neuron's input P and error E according to the perceptron learning rule:

```
dw = 0, if e = 0
    = p', if e = 1
    = -p', if e = -1
```

This can be summarized as

```
dw = e*p'
```


References

Rosenblatt, F., Principles of Neurodynamics, Washington, D.C., Spartan Press, 1961

```
See Also
adapt | learnpn | train
```


learnpn

Normalized perceptron weight and bias learning function

Syntax

[dW,LS] = learnpn(W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learnpn('code')

Description

learnpn is a weight and bias learning function. It can result in faster learning than learnp when input vectors have widely varying magnitudes.
[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, Q)$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R weight gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=\quad[\quad]$
LS	Learning state, initially should be $=[]$

and returns

dW	S-by-R weight (or bias) change matrix

LS	New learning state

info = learnpn('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons.

```
p = rand(2,1);
e = rand(3,1);
```

Because learnpn only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])
```


Network Use

You can create a standard network that uses learnpn with newp.
To prepare the weights and the bias of layer i of a custom network to learn with learnpn,

1 Set net.trainFcn to 'trainb'. (net.trainParam automatically becomes trainb's default parameters.)
2 Set net. adaptFcn to 'trains'. (net. adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights $\{i, j\}$. learnFcn to 'learnpn'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnpn'.
5 Set net.biases\{i\}.learnFcn to 'learnpn'. (Each weight and bias learning parameter property automatically becomes the empty matrix, because learnpn has no learning parameters.)

To train the network (or enable it to adapt),
1 Set net.trainParam (or net.adaptParam) properties to desired values.
2 Call train (adapt).
See help newp for adaption and training examples.

Limitations

Perceptrons do have one real limitation. The set of input vectors must be linearly separable if a solution is to be found. That is, if the input vectors with targets of 1 cannot be separated by a line or hyperplane from the input vectors associated with values of 0 , the perceptron will never be able to classify them correctly.

More About

Algorithms

learnpn calculates the weight change $d W$ for a given neuron from the neuron's input P and error E according to the normalized perceptron learning rule:

```
pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw = 0, if e = 0
    = pn', if e = 1
    = -pn', if e = -1
```

The expression for dW can be summarized as

```
dw = e*pn'
```


See Also

adapt | learnp | train

learnsom

Self-organizing map weight learning function

Syntax

[dW,LS] = learnsom(W, P, Z, N, A, T, E, gW, gA, D, LP, LS)
info = learnsom('code')

Description

learnsom is the self-organizing map weight learning function.
[dW, LS] = learnsom(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones $(1, Q)$)
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
GW	S-by-R weight gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=\quad[\quad]$
LS	Learning state, initially should be $=[]$

and returns

$d W$	S-by-R weight (or bias) change matrix

LS	New learning state

Learning occurs according to learnsom's learning parameters, shown here with their default values.

LP.order_lr	0.9	Ordering phase learning rate
LP.order_steps	1000	Ordering phase steps
LP.tune_lr	0.02	Tuning phase learning rate
LP.tune_nd	1	Tuning phase neighborhood distance

info = learnsom('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg'	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P, output A, and weight matrix W for a layer with a two-element input and six neurons. You also calculate positions and distances for the neurons, which are arranged in a 2-by- 3 hexagonal pattern. Then you define the four learning parameters.

```
p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;
```

Because learnsom only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)
```


Network Use

You can create a standard network that uses learnsom with newsom.
1 Set net.trainFcn to 'trainr'. (net.trainParam automatically becomes trainr's default parameters.)
2 Set net. adaptFcn to 'trains'. (net.adaptParam automatically becomes trains's default parameters.)
3 Set each net.inputWeights\{i,j\}.learnFcn to 'learnsom'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnsom'.
5 Set net.biases\{i\}.learnFcn to 'learnsom'. (Each weight learning parameter property is automatically set to learnsom's default parameters.)

To train the network (or enable it to adapt):
1 Set net.trainParam (or net. adaptParam) properties to desired values.
2 Call train (adapt).

More About

Algorithms

learnsom calculates the weight change $d W$ for a given neuron from the neuron's input P, activation A2, and learning rate LR:

```
dw = lr*a2*(p'-w)
```

where the activation A 2 is found from the layer output A, neuron distances D, and the current neighborhood size ND:

```
a2(i,q) = 1, if a(i,q) = 1
    =0.5, if a(j,q) = 1 and D(i,j) <= nd
    = 0, otherwise
```

The learning rate LR and neighborhood size NS are altered through two phases: an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP. order_steps. During this phase LR is adjusted from LP. order_lr down to LP. tune_lr, and ND is adjusted from the
maximum neuron distance down to 1 . It is during this phase that neuron weights are expected to order themselves in the input space consistent with the associated neuron positions.

During the tuning phase LR decreases slowly from LP. tune_lr, and ND is always set to LP.tune_nd. During this phase the weights are expected to spread out relatively evenly over the input space while retaining their topological order, determined during the ordering phase.

See Also

adapt \| train

learnsomb

Batch self-organizing map weight learning function

Syntax

[dW,LS] = learnsomb(W,P,Z,N,A,T,E,gW,gA, D,LP,LS) info = learnsomb('code')

Description

learnsomb is the batch self-organizing map weight learning function.
[dW, LS] = learnsomb(W, P, Z, N, A, T, E, gW, gA , D, LP, LS) takes several inputs:

W	S-by-R weight matrix (or S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R gradient with respect to performance
GA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[$]
LS	Learning state, initially should be $=[]$

and returns the following:

dW	S-by-R weight (or bias) change matrix
LS	New learning state

Learning occurs according to learnsomb's learning parameter, shown here with its default value:

LP.init_neighborhood	3	Initial neighborhood size
LP.steps	100	Ordering phase steps

info = learnsomb('code') returns useful information for each code string:

'pnames'	Returns names of learning parameters.
'pdefaults '	Returns default learning parameters.
'needg'	Returns 1 if this function uses gW or gA.

Examples

This example defines a random input P, output A, and weight matrix W for a layer with a 2 -element input and 6 neurons. This example also calculates the positions and distances for the neurons, which appear in a 2 -by- 3 hexagonal pattern.

```
p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp = learnsomb('pdefaults');
```

Because learnsom only needs these values to calculate a weight change (see Algorithm).

```
ls = [];
[dW,ls] = learnsomb(w,p,[],[],a,[],[],[],[],d,lp,ls)
```


Network Use

You can create a standard network that uses learnsomb with selforgmap. To prepare the weights of layer i of a custom network to learn with learnsomb:

1 Set NET.trainFcn to 'trainr'. (NET.trainParam automatically becomes trainr's default parameters.)

2 Set NET. adaptFcn to 'trains'. (NET. adaptParam automatically becomes trains's default parameters.)
3 Set each NET. inputWeights $\{i, j\}$. learnFcn to 'learnsomb'.
4 Set each NET.layerWeights $\{i, j\}$.learnFcn to 'learnsomb'. (Each weight learning parameter property is automatically set to learnsomb's default parameters.)

To train the network (or enable it to adapt):
1 Set NET.trainParam (or NET. adaptParam) properties as desired.
2 Call train (or adapt).

More About

Algorithms

learnsomb calculates the weight changes so that each neuron's new weight vector is the weighted average of the input vectors that the neuron and neurons in its neighborhood responded to with an output of 1 .

The ordering phase lasts as many steps as LP. steps.
During this phase, the neighborhood is gradually reduced from a maximum size of LP.init_neighborhood down to 1 , where it remains from then on.

See Also

adapt | selforgmap | train

learnwh

Widrow-Hoff weight/bias learning function

Syntax

[dW,LS] = learnwh (W, P, Z, N, A, T, E, gW, gA, D, LP, LS $)$ info = learnwh('code')

Description

learnwh is the Widrow-Hoff weight/bias learning function, and is also known as the delta or least mean squared (LMS) rule.
[dW,LS] = learnwh(W, P, Z, N, A, T, E, gW, gA, D, LP, LS) takes several inputs,

W	S-by-R weight matrix (or b, and S-by-1 bias vector)
P	R-by-Q input vectors (or ones (1, Q))
Z	S-by-Q weighted input vectors
N	S-by-Q net input vectors
A	S-by-Q output vectors
T	S-by-Q layer target vectors
E	S-by-Q layer error vectors
gW	S-by-R weight gradient with respect to performance
gA	S-by-Q output gradient with respect to performance
D	S-by-S neuron distances
LP	Learning parameters, none, LP $=[]$
LS	Learning state, initially should be $=[$]

and returns

$d W$	S-by-R weight (or bias) change matrix

LS \quad New learning state

Learning occurs according to learnwh's learning parameter, shown here with its default value.

LP. lr -	Learning rate
0.01	

info $=$ learnwh('code') returns useful information for each code string:

'pnames '	Names of learning parameters
'pdefaults '	Default learning parameters
'needg '	Returns 1 if this function uses gW or gA

Examples

Here you define a random input P and error E for a layer with a two-element input and three neurons. You also define the learning rate LR learning parameter.

```
p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;
```

Because learnwh only needs these values to calculate a weight change (see "Algorithm" below), use them to do so.

```
dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])
```


Network Use

You can create a standard network that uses learnwh with linearlayer.
To prepare the weights and the bias of layer i of a custom network to learn with learnwh,

1 Set net.trainFcn to 'trainb'. net.trainParam automatically becomes trainb's default parameters.

2 Set net. adaptFcn to 'trains'. net. adaptParam automatically becomes trains's default parameters.
3 Set each net.inputWeights $\{i, j\}$.learnFcn to 'learnwh'.
4 Set each net.layerWeights\{i,j\}.learnFcn to 'learnwh'.
5 Set net.biases\{i\}.learnFcn to 'learnwh'. Each weight and bias learning parameter property is automatically set to learnwh's default parameters.

To train the network (or enable it to adapt),
1 Set net.trainParam (net.adaptParam) properties to desired values.
2 Call train (adapt).

More About

Algorithms

learnwh calculates the weight change dW for a given neuron from the neuron's input P and error E , and the weight (or bias) learning rate LR, according to the Widrow-Hoff learning rule:

```
dw = lr*e*pn'
```


References

Widrow, B., and M.E. Hoff, "Adaptive switching circuits," 1960 IRE WESCON Convention Record, New York IRE, pp. 96-104, 1960

Widrow, B., and S.D. Sterns, Adaptive Signal Processing, New York, Prentice-Hall, 1985

See Also
adapt | linearlayer | train

linearlayer

Linear layer

Syntax

linearlayer(inputDelays,widrowHoffLR)

Description

Linear layers are single layers of linear neurons. They may be static, with input delays of 0 , or dynamic, with input delays greater than 0 . They can be trained on simple linear time series problems, but often are used adaptively to continue learning while deployed so they can adjust to changes in the relationship between inputs and outputs while being used.

If a network is needed to solve a nonlinear time series relationship, then better networks to try include timedelaynet, narxnet, and narnet.
linearlayer(inputDelays, widrowHoffLR) takes these arguments,

inputDelays	Row vector of increasing 0 or positive delays $($ default $=1: 2$)
widrowHoffLR	Widrow-Hoff learning rate $($ default $=0.01)$

and returns a linear layer.
If the learning rate is too small, learning will happen very slowly. However, a greater danger is that it may be too large and learning will become unstable resulting in large changes to weight vectors and errors increasing instead of decreasing. If a data set is available which characterizes the relationship the layer is to learn, the maximum stable learning rate can be calculated with maxlinlr.

Examples

Here a linear layer is trained on a simple time series problem.

```
x = {\begin{array}{llllllllllll}{0}&{-1}&{1}&{1}&{0}&{-1}&{1}&{0}&{0}&{1}\end{array}};
t = {0-1 0 2 1 - 1 0 1 0 1 1};
net = linearlayer(1:2,0.01);
[Xs,Xi,Ai,Ts] = preparets(net,x,t);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)
perf =
    0.2396
```


See Also

preparets | removedelay | timedelaynet | narnet | narxnet

linkdist

Link distance function

Syntax

d = linkdist(pos)

Description

linkdist is a layer distance function used to find the distances between the layer's neurons given their positions.
d = linkdist(pos) takes one argument,

pos	N -by-S matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples

Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and find their distances.

```
pos = rand(3,10);
```

D = linkdist(pos)

Network Use

You can create a standard network that uses linkdist as a distance function by calling selforgmap.

To change a network so that a layer's topology uses linkdist, set net. layers\{i\}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist.

More About

Algorithms

The link distance D between two position vectors $P i$ and $P j$ from a set of S vectors is

```
Dij = O, if i == j
    = 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
    = 2, if k exists, Dik = Dkj = 1
    = 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
    = N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
    = S, if none of the above conditions apply
```

See Also
dist | mandist | selforgmap | sim

logsig

Log-sigmoid transfer function

Graph and Symbol

$a=\log \operatorname{sig}(n)$
Log-Sigmoid Transfer Function

Syntax

A $=\operatorname{logsig}(\mathrm{N}, \mathrm{FP})$
dA_dN = logsig('dn', N, A, FP)
info = logsig('code')

Description

logsig is a transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{logsig}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements squashed into [0,1$]$.
$d A _d N=\operatorname{logsig}(' d n ', N, A, F P)$ returns the S-by- Q derivative of A with respect to N. If A or FP is not supplied or is set to [], FP reverts to the default parameters, and A is calculated from N .
info = logsig('code') returns useful information for each code string:
logsig('name') returns the name of this function.
logsig('output', FP) returns the [min max] output range.
logsig('active', FP) returns the [min max] active input range.
logsig('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
logsig('fpnames') returns the names of the function parameters.
logsig('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the logsig transfer function.

```
n = -5:0.1:5;
a = logsig(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'logsig';
```


More About

Algorithms

$\log i g(n)=1 /(1+\exp (-n))$

See Also

sim \| tansig

lvqnet

Learning vector quantization neural network

Syntax

lvqnet(hiddenSize,lvqLR,lvqLF)

Description

LVQ (learning vector quantization) neural networks consist of two layers. The first layer maps input vectors into clusters that are found by the network during training. The second layer merges groups of first layer clusters into the classes defined by the target data.

The total number of first layer clusters is determined by the number of hidden neurons. The larger the hidden layer the more clusters the first layer can learn, and the more complex mapping of input to target classes can be made. The relative number of first layer clusters assigned to each target class are determined according to the distribution of target classes at the time of network initialization. This occurs when the network is automatically configured the first time train is called, or manually configured with the function configure, or manually initialized with the function init is called.
lvqnet (hiddenSize, lvqLR, lvqLF) takes these arguments,

hiddenSize	Size of hidden layer (default = 10)
lvqLR	LVQ learning rate (default = 0.01)
lvqLF	LVQ learning function (default = ' learnlv1 ' $)$

and returns an LVQ neural network.
The other option for the lvq learning function is learnlv2.

Examples

Here, an LVQ network is trained to classify iris flowers.

```
[x,t] = iris_dataset;
net = lvqnet(10);
net.trainParam.epochs = 50;
net = train(net,x,t);
view(net)
y = net(x);
perf = perform(net,y,t)
classes = vec2ind(y);
perf =
    0.0356
```

Layer

See Also

competlayer | patternnet | selforgmap

Ivqoutputs

LVQ outputs processing function

Syntax

```
[X,settings] = lvqoutputs(X)
X = lvqoutputs('apply',X,PS)
X = lvqoutputs('reverse',X,PS)
dx_dy = lvqoutputs('dx_dy',X,X,PS)
```


Description

[X, settings] = lvqoutputs (X) returns its argument unchanged, but stores the ratio of target classes in the settings for use by initlvq to initialize weights.

X = lvqoutputs('apply', X,PS) returns X.
X = lvqoutputs('reverse', X, PS) returns X.
dx_dy = lvqoutputs('dx_dy', X,X,PS) returns the identity derivative.

See Also
lvqnet | initlvq

mae

Mean absolute error performance function

Syntax

```
perf = mae(E,Y,X,FP)
```


Description

mae is a network performance function. It measures network performance as the mean of absolute errors.
perf $=\operatorname{mae}(E, Y, X, F P)$ takes E and optional function parameters,

E	Matrix or cell array of error vectors
Y	Matrix or cell array of output vectors (ignored)
X	Vector of all weight and bias values (ignored)
FP	Function parameters (ignored)

and returns the mean absolute error.
dPerf_dx = mae('dx',E,Y,X,perf,FP) returns the derivative of perf with respect to X .
info $=$ mae('code') returns useful information for each code string:
mae('name') returns the name of this function.
mae('pnames') returns the names of the training parameters.
mae('pdefaults') returns the default function parameters.

Examples

Create and configure a perceptron to have one input and one neuron:

```
net = perceptron;
net = configure(net,0,0);
```

The network is given a batch of inputs P . The error is calculated by subtracting the output A from target T. Then the mean absolute error is calculated.

```
p = [-10 -5 0 5 10];
t = [0 0 1 1 1 1];
y = net(p)
e = t-y
perf = mae(e)
```

Note that mae can be called with only one argument because the other arguments are ignored. mae supports those arguments to conform to the standard performance function argument list.

Network Use

You can create a standard network that uses mae with perceptron.
To prepare a custom network to be trained with mae, set net. performFcn to 'mae '. This automatically sets net. performParam to the empty matrix [], because mae has no performance parameters.

In either case, calling train or adapt, results in mae being used to calculate performance.

See Also

mse | perceptron

mandist

Manhattan distance weight function

Syntax

Z = mandist (W, P)
D = mandist (pos)

Description

mandist is the Manhattan distance weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=$ mandist (W, P) takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors

and returns the S-by-Q matrix of vector distances.
mandist is also a layer distance function, which can be used to find the distances between neurons in a layer.

D = mandist(pos) takes one argument,

pos	S row matrix of neuron positions

and returns the S-by-S matrix of distances.

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.
$W=\operatorname{rand}(4,3)$;
$P=\operatorname{rand}(3,1) ;$
$Z=$ mandist (W, P)
Here you define a random matrix of positions for 10 neurons arranged in threedimensional space and then find their distances.

```
pos = rand(3,10);
```

D = mandist(pos)

Network Use

To change a network so an input weight uses mandist, set net. inputWeight $\{i, j\}$.weightFcn to 'mandist'. For a layer weight, set net.layerWeight\{i,j\}.weightFcn to 'mandist'.

To change a network so a layer's topology uses mandist, set net. layers\{i\}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or newgrnn for simulation examples.

More About

Algorithms

The Manhattan distance D between two vectors X and Y is
$D=\operatorname{sum}(a b s(x-y))$

See Also
dist | linkdist | sim

mapminmax

Process matrices by mapping row minimum and maximum values to [-1 1 1]

Syntax

$[\mathrm{Y}, \mathrm{PS}]=\operatorname{mapminmax}(\mathrm{X}, \mathrm{YMIN}, \mathrm{YMAX})$
[Y,PS] = mapminmax (X,FP)
Y = mapminmax('apply',X,PS)
X = mapminmax('reverse', Y, PS)
$d x _d y=m a p m i n m a x\left(' d x _d y ', X, Y, P S\right)$

Description

mapminmax processes matrices by normalizing the minimum and maximum values of each row to [YMIN, YMAX].
[Y, PS] = mapminmax $(\mathrm{X}, \mathrm{YMIN}, \mathrm{YMAX})$ takes X and optional parameters

X	N-by-Q matrix or a 1-by-TS row cell array of N-by-Q matrices
YMIN	Minimum value for each row of Y (default is -1$)$
YMAX	Maximum value for each row of Y (default is +1$)$

and returns

Y	Each M-by-Q matrix (where $M==N$) (optional)
PS	Process settings that allow consistent processing of values

[Y, PS] = mapminmax (X,FP) takes parameters as a struct: FP.ymin, FP.ymax.
$Y=$ mapminmax('apply', $X, P S$) returns Y, given X and settings $P S$.
X = mapminmax('reverse', $Y, P S$) returns X, given Y and settings $P S$.
dx_dy = mapminmax('dx_dy',X,Y,PS) returns the reverse derivative.

Examples

Here is how to format a matrix so that the minimum and maximum values of each row are mapped to default interval $[-1,+1]$.

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapminmax(x1)
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapminmax('apply',x2,PS)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = mapminmax('reverse',y1,PS)
```


Definitions

Before training, it is often useful to scale the inputs and targets so that they always fall within a specified range. The function mapminmax scales inputs and targets so that they fall in the range $[-1,1]$. The following code illustrates how to use this function.

```
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
net = train(net,pn,tn);
```

The original network inputs and targets are given in the matrices p and t. The normalized inputs and targets pn and tn that are returned will all fall in the interval $[-1,1]$. The structures ps and ts contain the settings, in this case the minimum and maximum values of the original inputs and targets. After the network has been trained, the ps settings should be used to transform any future inputs that are applied to the network. They effectively become a part of the network, just like the network weights and biases.

If mapminmax is used to scale the targets, then the output of the network will be trained to produce outputs in the range $[-1,1]$. To convert these outputs back into the same units that were used for the original targets, use the settings $t s$. The following code simulates the network that was trained in the previous code, and then converts the network output back into the original units.

```
an = sim(net,pn);
```

```
a = mapminmax('reverse',an,ts);
```

The network output an corresponds to the normalized targets tn . The unnormalized network output a is in the same units as the original targets t.

If mapminmax is used to preprocess the training set data, then whenever the trained network is used with new inputs they should be preprocessed with the minimum and maximums that were computed for the training set stored in the settings ps. The following code applies a new set of inputs to the network already trained.

```
pnewn = mapminmax('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapminmax('reverse',anewn,ts);
```

For most networks, including feedforwardnet, these steps are done automatically, so that you only need to use the sim command.

More About

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not all equal. (If $x m a x=x m i n$ or if either $x m a x$ or $x m i n$ are non-finite, then $y=x$ and no change occurs.)

```
y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin;
```


See Also

fixunknowns | mapstd | processpca

mapstd

Process matrices by mapping each row's means to 0 and deviations to 1

Syntax

```
[Y,PS] = mapstd(X,ymean,ystd)
[Y,PS] = mapstd(X,FP)
Y = mapstd('apply',X,PS)
X = mapstd('reverse',Y,PS)
dx_dy = mapstd('dx_dy',X,Y,PS)
```


Description

mapstd processes matrices by transforming the mean and standard deviation of each row to ymean and ystd.
[Y, PS] = mapstd(X,ymean,ystd) takes X and optional parameters,

X	N-by-Q matrix or a 1-by-TS row cell array of N-by-Q matrices
ymean	Mean value for each row of $\mathrm{Y}($ default is 0$)$
ystd	Standard deviation for each row of $\mathrm{Y}($ default is 1$)$

and returns

Y	Each M-by-Q matrix (where $M==N$) (optional)
PS	Process settings that allow consistent processing of values

[Y, PS] = mapstd $(\mathrm{X}, \mathrm{FP})$ takes parameters as a struct: FP.ymean, FP.ystd.
$\mathrm{Y}=$ mapstd('apply', X, PS) returns Y , given X and settings PS .
X = mapstd('reverse', Y, PS) returns X , given Y and settings PS.
dx_dy = mapstd('dx_dy',X,Y,PS) returns the reverse derivative.

Examples

Here you format a matrix so that the minimum and maximum values of each row are mapped to default mean and STD of 0 and 1.

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = mapstd(x1)
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = mapstd('apply',x2,PS)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = mapstd('reverse',y1,PS)
```


Definitions

Another approach for scaling network inputs and targets is to normalize the mean and standard deviation of the training set. The function mapstd normalizes the inputs and targets so that they will have zero mean and unity standard deviation. The following code illustrates the use of mapstd.

```
[pn,ps] = mapstd(p);
[tn,ts] = mapstd(t);
```

The original network inputs and targets are given in the matrices p and t. The normalized inputs and targets pn and th that are returned will have zero means and unity standard deviation. The settings structures ps and ts contain the means and standard deviations of the original inputs and original targets. After the network has been trained, you should use these settings to transform any future inputs that are applied to the network. They effectively become a part of the network, just like the network weights and biases.

If mapstd is used to scale the targets, then the output of the network is trained to produce outputs with zero mean and unity standard deviation. To convert these outputs back into the same units that were used for the original targets, use ts. The following code simulates the network that was trained in the previous code, and then converts the network output back into the original units.

```
an = sim(net,pn);
a = mapstd('reverse',an,ts);
```

The network output an corresponds to the normalized targets tn . The unnormalized network output a is in the same units as the original targets t.

If mapstd is used to preprocess the training set data, then whenever the trained network is used with new inputs, you should preprocess them with the means and standard deviations that were computed for the training set using ps. The following commands apply a new set of inputs to the network already trained:

```
pnewn = mapstd('apply',pnew,ps);
anewn = sim(net,pnewn);
anew = mapstd('reverse',anewn,ts);
```

For most networks, including feedforwardnet, these steps are done automatically, so that you only need to use the sim command.

More About

Algorithms

It is assumed that X has only finite real values, and that the elements of each row are not all equal.

```
y = (x-xmean)*(ystd/xstd) + ymean;
```

See Also
fixunknowns | mapminmax | processpca

maxlinlr

Maximum learning rate for linear layer

Syntax

```
lr = maxlinlr(P)
lr = maxlinlr(P,'bias')
```


Description

maxlinlr is used to calculate learning rates for linearlayer.
lr = maxlinlr(P) takes one argument,

P	R-by-Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that is to be trained only on the vectors in P.
lr = maxlinlr(P, 'bias') returns the maximum learning rate for a linear layer with a bias.

Examples

Here you define a batch of four two-element input vectors and find the maximum learning rate for a linear layer with a bias.

```
P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')
```

See Also
learnwh | linearlayer

meanabs

Mean of absolute elements of matrix or matrices

Syntax

```
[m,n] = meanabs(x)
```


Description

[m,n] = meanabs (x) takes a matrix or cell array of matrices and returns,

m	Mean value of all absolute finite values
n	Number of finite values

If x contains no finite values, the mean returned is 0 .

Examples

m = meanabs([1 2;3 4])
[m,n] = meanabs(\{[1 2; NaN 4], [4 5; 2 3]\})

See Also
meansqr | sumabs | sumsqr

meansqr

Mean of squared elements of matrix or matrices

Syntax

```
[m,n] = meansqr(x)
```


Description

[m,n] = meansqr(x) takes a matrix or cell array of matrices and returns,

m	Mean value of all squared finite values
n	Number of finite values

If x contains no finite values, the mean returned is 0 .

Examples

```
m = meansqr([1 2;3 4])
[m,n] = meansqr({[1 2; NaN 4], [4 5; 2 3]})
```

See Also
meanabs | sumabs | sumsqr

midpoint

Midpoint weight initialization function

Syntax

```
W = midpoint(S,PR)
```


Description

midpoint is a weight initialization function that sets weight (row) vectors to the center of the input ranges.

W = midpoint (S, PR) takes two arguments,

S	Number of rows (neurons)
PR	R-by-Q matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R matrix with rows set to (Pmin+Pmax) '/2.

Examples

Here initial weight values are calculated for a five-neuron layer with input elements ranging over [0 1] and [-2 2].

W = midpoint (5,[0 1; -2 2])

Network Use

You can create a standard network that uses midpoint to initialize weights by calling newc.

To prepare the weights and the bias of layer i of a custom network to initialize with midpoint,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'midpoint'. Set each net. layerWeights\{i,j\}.initFcn to 'midpoint'.

To initialize the network, call init.

See Also

initwb | initlay | init

minmax

Ranges of matrix rows

Syntax

```
pr = minmax(P)
```


Description

$\mathrm{pr}=\operatorname{minmax}(\mathrm{P})$ takes one argument,

```
P R-by-Q matrix
```

and returns the R-by- 2 matrix PR of minimum and maximum values for each row of P .
Alternatively, P can be an M-by-N cell array of matrices. Each matrix P $\{i, j\}$ should have Ri rows and Q columns. In this case, minmax returns an M -by- 1 cell array where the mth matrix is an Ri-by-2 matrix of the minimum and maximum values of elements for the matrix on the ith row of P.

Examples

```
P = [00 1 2; -1 -2 -0.5]
pr = minmax(P)
P = {[0 1; -1 -2] [2 3 -2; 8 0 2]; [1 -2] [9 7 3]};
pr = minmax(P)
```


mse

Mean squared normalized error performance function

Syntax

```
perf = mse(net,t,y,ew)
```


Description

mse is a network performance function. It measures the network's performance according to the mean of squared errors.
perf $=m s e(n e t, t, y, e w)$ takes these arguments:

net	Neural network
t	Matrix or cell array of targets
y	Matrix or cell array of outputs
ew	Error weights (optional)

and returns the mean squared error.
This function has two optional parameters, which are associated with networks whose net. trainFen is set to this function:

- 'regularization' can be set to any value between 0 and 1 . The greater the regularization value, the more squared weights and biases are included in the performance calculation relative to errors. The default is 0 , corresponding to no regularization.
- 'normalization' can be set to 'none' (the default); 'standard ', which normalizes errors between -2 and 2, corresponding to normalizing outputs and targets between -1 and 1 ; and 'percent ', which normalizes errors between -1 and 1 . This feature is useful for networks with multi-element outputs. It ensures that the relative accuracy of output elements with differing target value ranges are treated as equally important, instead of prioritizing the relative accuracy of the output element with the largest target value range.

You can create a standard network that uses mse with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with mse, set net. performFcn to 'mse'. This automatically sets net. performParam to a structure with the default optional parameter values.

Examples

Here a two-layer feedforward network is created and trained to predict median house prices using the mse performance function and a regularization value of 0.01 , which is the default performance function for feedforwardnet.

```
[x,t] = house_dataset;
net = feedforwardnet(10);
net.performFcn = 'mse'; % Redundant, MSE is default
net.performParam.regularization = 0.01;
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
```

Alternately, you can call this function directly.
perf = mse(net, x,t,'regularization', 0.01);

See Also
 mae

narnet

Nonlinear autoregressive neural network

Syntax

narnet(feedbackDelays, hiddenSizes,trainFcn)

Description

NAR (nonlinear autoregressive) neural networks can be trained to predict a time series from that series past values.
narnet(feedbackDelays, hiddenSizes, trainFcn) takes these arguments,

feedbackDelays	Row vector of increasing 0 or positive delays (default = $1: 2)$
hiddenSizes	Row vector of one or more hidden layer sizes (default = $10)$
trainFcn	Training function (default = 'trainlm')

and returns a NAR neural network.

Examples

Here a NAR network is used to solve a simple time series problem.

```
T = simplenar_dataset;
net = narnet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,{},{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi);
perf = perform(net,Ts,Y)
```

```
perf =
```

1.0100e-09

See Also

preparets | removedelay | timedelaynet | narnet | narxnet

narxneł

Nonlinear autoregressive neural network with external input

Syntax

narxnet(inputDelays,feedbackDelays,hiddenSizes,trainFcn)

Description

NARX (Nonlinear autoregressive with external input) networks can learn to predict one time series given past values of the same time series, the feedback input, and another time series, called the external or exogenous time series.
narxnet(inputDelays,feedbackDelays, hiddenSizes,trainFcn) takes these arguments,

inputDelays	Row vector of increasing 0 or positive delays (default = $1: 2)$
feedbackDelays	Row vector of increasing 0 or positive delays (default = $1: 2)$
hiddenSizes	Row vector of one or more hidden layer sizes (default = $10)$
trainFcn	Training function (default = 'trainlm')

and returns a NARX neural network.

Examples

Here a NARX neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
net = narxnet(1:2,1:\overline{2},10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
```

```
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```

perf =
0.0192

Here the NARX network is simulated in closed loop form.

```
netc = closeloop(net);
view(netc)
[Xs,Xi,Ai,Ts] = preparets(netc,X,{},T);
y = netc(Xs,Xi,Ai);
```


Here the NARX network is used to predict the next output, a timestep ahead of when it will actually appear.

```
netp = removedelay(net);
view(netp)
[Xs,Xi,Ai,Ts] = preparets(netp,X,{},T);
y = netp(Xs,Xi,Ai);
```


See Also

closeloop | narnet | openloop | preparets | removedelay | timedelaynet

nctool

Neural network classification or clustering tool

Syntax

nctool

Description

nctool opens the neural network clustering GUI.
For more information and an example of its usage, see "Cluster Data with a SelfOrganizing Map".

More About

Algorithms

nctool leads you through solving a clustering problem using a self-organizing map. The map forms a compressed representation of the inputs space, reflecting both the relative density of input vectors in that space, and a two-dimensional compressed representation of the input-space topology.

See Also

nftool|nprtool|ntstool

negdist

Negative distance weight function

Syntax

```
Z = negdist(W,P)
dim = negdist('size',S,R,FP)
dw = negdist('dz_dw',W,P,Z,FP)
```


Description

negdist is a weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=$ negdist (W, P) takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of negative vector distances.
dim $=$ negdist('size', S, R, FP) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [$\mathrm{S}-\mathrm{by}-\mathrm{R}$].
$\mathrm{dw}=$ negdist('dz_dw', W, $P, Z, F P)$ returns the derivative of Z with respect to W.

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

```
W = rand(4,3);
P = rand (3,1);
Z = negdist(W,P)
```


Network Use

You can create a standard network that uses negdist by calling competlayer or selforgmap.

To change a network so an input weight uses negdist, set net. inputWeight $\{i, j\}$. weightFcn to 'negdist'. For a layer weight, set net.layerWeight\{i,j\}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist.

More About

Algorithms

negdist returns the negative Euclidean distance:
$z=-\operatorname{sqrt}\left(\operatorname{sum}(w-p)^{\wedge} 2\right)$

See Also

competlayer | sim | dist | dotprod | selforgmap

netinv

Inverse transfer function

Syntax

$A=\operatorname{netinv}(N, F P)$

Description

netinv is a transfer function. Transfer functions calculate a layer's output from its net input.
$A=$ netinv (N,FP) takes inputs

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns $1 / \mathrm{N}$.
info $=$ netinv('code') returns information about this function. The following codes are supported:
netinv('name') returns the name of this function.
netinv('output', FP) returns the [min max] output range.
netinv('active', FP) returns the [min max] active input range.
netinv('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
netinv('fpnames') returns the names of the function parameters.
netinv('fpdefaults') returns the default function parameters.

Examples

Here you define 10 five-element net input vectors N and calculate A .
$\mathrm{n}=\operatorname{rand}(5,10) ;$
$\mathrm{a}=\operatorname{netinv}(\mathrm{n})$;
Assign this transfer function to layer i of a network.
net.layers\{i\}.transferFcn = 'netinv';

See Also

tansig| logsig

netprod

Product net input function

Syntax

```
N = netprod({Z1,Z2,...,Zn})
info = netprod('code')
```


Description

netprod is a net input function. Net input functions calculate a layer's net input by combining its weighted inputs and biases.
$N=\operatorname{netprod}(\{Z 1, Z 2, \ldots, Z n\})$ takes
Zi \quad S-by-Q matrices in a row cell array
and returns an element-wise product of Z 1 to Zn .
info $=$ netprod('code') returns information about this function. The following codes are supported:

'deriv'	Name of derivative function
'fullderiv'	Full N-by-S-by-Q derivative = 1, element-wise S-by-Q derivative $=0$
'name'	Full name
'fpnames'	Returns names of function parameters
'fpdefaults'	Returns default function parameters

Examples

Here netprod combines two sets of weighted input vectors (user-defined).

```
Z1 = [1 2 4;3 4 1];
```

```
Z2 = [-1 2 2; -5 -6 1];
Z = {Z1,Z2};
N = netprod({Z})
```

Here netprod combines the same weighted inputs with a bias vector. Because Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B must be created with concur so that all sizes match.
$B=[0 ;-1] ;$
$Z=\{Z 1, Z 2$, concur $(B, 3)\}$;
$N=\operatorname{netprod}(Z)$

Network Use

You can create a standard network that uses netprod by calling newpnn or newgrnn.
To change a network so that a layer uses netprod, set net. layers\{i\}. netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or newgrnn for simulation examples.

See Also

sim | netsum | concur

netsum

Sum net input function

Syntax

```
N = netsum({Z1,Z2,\ldots,Zn},FP)
info = netsum('code')
```


Description

netsum is a net input function. Net input functions calculate a layer's net input by combining its weighted inputs and biases.
$N=$ netsum $(\{Z 1, Z 2, \ldots, Z n\}, F P)$ takes $Z 1$ to $Z n$ and optional function parameters,

Zi	S-by-Q matrices in a row cell array
FP	Row cell array of function parameters (ignored)

and returns the elementwise sum of Z 1 to Zn .
info $=$ netsum('code') returns information about this function. The following codes are supported:
netsum('name') returns the name of this function.
netsum ('type') returns the type of this function.
netsum('fpnames') returns the names of the function parameters.
netsum('fpdefaults') returns default function parameter values.
netsum('fpcheck', FP) throws an error for illegal function parameters.
netsum('fullderiv') returns 0 or 1 , depending on whether the derivative is S -by- Q or N-by-S-by-Q.

Examples

Here netsum combines two sets of weighted input vectors and a bias. You must use concur to make B the same dimensions as Z1 and Z2.
$z 1=\left[\begin{array}{lllll}1 & 2 & 4 ; & 3 & 1\end{array}\right]$
z2 $=\left[\begin{array}{lllll}-1 & 2 & 2 ;-5 & -6 & 1\end{array}\right]$
b $=$ [0; -1]
n = netsum(\{z1,z2,concur(b,3)\})
Assign this net input function to layer i of a network.

```
net.layers(i).netFcn = 'compet';
```

Use feedforwardnet or cascadeforwardnet to create a standard network that uses netsum.

```
See Also
cascadeforwardnet | netprod | netinv | feedforwardnet
```


network

Create custom neural network

Syntax

```
net = network
```

net $=$
network(numInputs, numLayers, biasConnect, inputConnect, layerConnect, outputConneo

To Get Help

Type help network/network.

Description

network creates new custom networks. It is used to create networks that are then customized by functions such as feedforwardnet and narxnet.
net $=$ network without arguments returns a new neural network with no inputs, layers or outputs.
net =
network (numInputs, numLayers, biasConnect, inputConnect, layerConnect, outputConneo takes these optional arguments (shown with default values):

numInputs	Number of inputs, 0
numLayers	Number of layers, 0
biasConnect	numLayers-by-1 Boolean vector, zeros
inputConnect	numLayers-by-numInputs Boolean matrix, zeros
layerConnect	numLayers-by-numLayers Boolean matrix, zeros
outputConnect	1 -by-numLayers Boolean vector, zeros

and returns

net	New network with the given property values

Properties

Architecture Properties

net. numInputs	0 or a positive integer	Number of inputs.
net. numLayers	0 or a positive integer	Number of layers.
net.biasConnect	numLayer-by-1 Boolean vector	If net.biasConnect(i) is 1 , then layer i has a bias, and net.biases $\{i\}$ is a structure describing that bias.
net.inputConnect	numLayer-by-numInputs Boolean vector	If net.inputConnect (i, j) is 1 , then layer i has a weight coming from input j , and net.inputWeights $\{\mathrm{i}, \mathrm{j}\}$ is a structure describing that weight.
net.layerConnect	numLayer-by-numLayers Boolean vector	If net. layerConnect (i, j) is 1 , then layer i has a weight coming from layer j , and net. layerWeights $\{\mathrm{i}, \mathrm{j}\}$ is a structure describing that weight.
net. numInputs	0 or a positive integer	Number of inputs.
net. numLayers	0 or a positive integer	Number of layers.
net. biasConnect	numLayer-by-1 Boolean vector	If net.biasConnect(i) is 1 , then layer i has a bias, and net.biases $\{i\}$ is a structure describing that bias.
net.inputConnect	numLayer-by-numInputs Boolean vector	If net.inputConnect (i, j) is 1 , then layer i has a weight coming from input j, and net.inputWeights $\{i, j\}$ is a structure describing that weight.

net. layerConnect	numLayer- by-numLayers Boolean vector	If net.layerConnect (i,j) is 1, then layer i has a weight coming from layer j, and net. layerWeights $\{i, j\}$ structure describing that weight.
net. outputConnect	1-by-numLayers Boolean vector	If net. outputConnect (i) is 1, then the network has an output from layer i, and net. outputs $\{i\}$ is a structure describing that output.
net. num0utputs	0 or a positive integer (read only)	Number of network outputs according to net. outputConnect.
net. numInputDelays	0 or a positive integer (read only)	Maximum input delay according to all net. inputWeight $\{i, j\} . d e l a y s . ~$
net. numLayerDelays	0 or a positive number (read only)	Maximum layer delay according to all net. layerWeight $\{i, j\} . d e l a y s . ~$

Subobject Structure Properties

net.inputs	numInputs-by-1 cell array	net.inputs $\{i\}$ is a structure defining input i.
net.layers	numLayers-by-1 cell array	net. layers $\{i\}$ is a structure defining layer i.
net.biases	numLayers-by-1 cell array	If net.biasConnect (i) is 1, then net.biases $\{i\}$ is a structure defining the bias for layer i.
net.inputWeights	numLayers- by-numInputs cell array	If net.inputConnect (i, j) is 1 , then net.inputWeights $\{i, j\}$ is a structure defining the weight to layer i from input j.
net.layerWeights	numLayers- by-numLayers cell array	If net.layerConnect (i, j) is 1, then net.layerWeights $\{i, j\}$ is a structure defining the weight to layer i from layer j.
net.outputs	1-by-numLayers cell array	If net. outputConnect (i) is 1, then net.outputs $\{i\}$ is a structure defining the network output from layer i.

Function Properties

net. adaptFcn	Name of a network adaption function or ' '
net. initFcn	Name of a network initialization function or ' '
net. performFcn	Name of a network performance function or ''
net.trainFcn	Name of a network training function or ' '

Parameter Properties

net.adaptParam	Network adaption parameters
net.initParam	Network initialization parameters
net.performParam	Network performance parameters
net.trainParam	Network training parameters

Weight and Bias Value Properties

net. IW	numLayers-by-numInputs cell array of input weight values
net.LW	numLayers-by-numLayers cell array of layer weight values
net.b	numLayers-by-1 cell array of bias values

Other Properties

net.userdata	Structure you can use to store useful values

Examples

Here is the code to create a network without any inputs and layers, and then set its numbers of inputs and layers to 1 and 2 respectively.

```
net = network
net.numInputs = 1
net.numLayers = 2
```

Here is the code to create the same network with one line of code.

```
net = network(1,2)
```

Here is the code to create a one-input, two-layer, feed-forward network. Only the first layer has a bias. An input weight connects to layer 1 from input 1. A layer weight connects to layer 2 from layer 1 . Layer 2 is a network output and has a target.

```
net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1])
```

You can see the properties of subobjects as follows:

```
net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
```

You can get the weight matrices and bias vector as follows:

```
net.IW{1,1}, net.IW{2,1}, net.b{1}
```

You can alter the properties of any of these subobjects. Here you change the transfer functions of both layers:

```
net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';
```

Here you change the number of elements in input 1 to 2 by setting each element's range:

```
net.inputs{1}.range = [0 1; -1 1];
```

Next you can simulate the network for a two-element input vector:

```
p = [0.5; -0.1];
y = sim(net,p)
```


See Also
 sim

newgrnn

Design generalized regression neural network

Syntax

```
net = newgrnn(P,T,spread)
```


Description

Generalized regression neural networks (grnns) are a kind of radial basis network that is often used for function approximation. grnns can be designed very quickly.
net $=$ newgrnn $(P, T, s p r e a d)$ takes three inputs,

P	R-by-Q matrix of Q input vectors
T	S-by-Q matrix of Q target class vectors
spread	Spread of radial basis functions (default $=1.0$)

and returns a new generalized regression neural network.
The larger the spread, the smoother the function approximation. To fit data very closely, use a spread smaller than the typical distance between input vectors. To fit the data more smoothly, use a larger spread.

Properties

newgrnn creates a two-layer network. The first layer has radbas neurons, and calculates weighted inputs with dist and net input with netprod. The second layer has purelin neurons, calculates weighted input with normprod, and net inputs with netsum. Only the first layer has biases.
newgrnn sets the first layer weights to P^{\prime}, and the first layer biases are all set to $0.8326 /$ spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread. The second layer weights W2 are set to T.

Examples

Here you design a radial basis network, given inputs P and targets T.

```
P = [llll
T = [2.0 4.1 5.9];
net = newgrnn(P,T);
```

The network is simulated for a new input.

```
P = 1.5;
Y = sim(net,P)
```


References

Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993, pp. 155-61

See Also

sim | newrb | newrbe | newpnn

newlind

Design linear layer

Syntax

```
net = newlind(P,T,Pi)
```


Description

net $=$ newlind $(P, T, P i)$ takes these input arguments,

P	R-by- Q matrix of Q input vectors
T	S-by- Q matrix of Q target class vectors
Pi	1-by-ID cell array of initial input delay states

where each element $\operatorname{Pi}\{i, k\}$ is an Ri-by-Q matrix, and the default $=[]$; and returns a linear layer designed to output T (with minimum sum square error) given input P .
newlind ($\mathrm{P}, \mathrm{T}, \mathrm{Pi}$) can also solve for linear networks with input delays and multiple inputs and layers by supplying input and target data in cell array form:

P	Ni-by-TS cell array	Each element $P\{i$, ts $\}$ is an Ri-by-Q input matrix
T	Nt-by-TS cell array	Each element $P\{i$, ts $\}$ is a Vi-by-Q matrix
Pi	Ni-by-ID cell array	Each element $\mathrm{Pi}\{\mathrm{i}, \mathrm{k}\}$ is an Ri-by-Q matrix, default $=[]$

and returns a linear network with ID input delays, Ni network inputs, and N1 layers, designed to output T (with minimum sum square error) given input P .

Examples

You want a linear layer that outputs T given P for the following definitions:

```
P = [1 2 3 3];
T = [l2.0 4.1 5.9];
```

Use newlind to design such a network and check its response.

```
net = newlind(P,T);
Y = sim(net,P)
```

You want another linear layer that outputs the sequence T given the sequence P and two initial input delay states Pi.

```
P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)
```

You want a linear network with two outputs Y1 and Y2 that generate sequences T1 and T2, given the sequences P1 and P2, with three initial input delay states Pi1 for input 1 and three initial delays states Pi2 for input 2.

```
P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)
```


More About

Algorithms

newlind calculates weight W and bias B values for a linear layer from inputs P and targets T by solving this linear equation in the least squares sense:
[W b] * [P; ones] = T

See Also

sim

newpnn

Design probabilistic neural network

Syntax

```
net = newpnn(P,T,spread)
```


Description

Probabilistic neural networks (PNN) are a kind of radial basis network suitable for classification problems.
net $=$ newpnn $(P, T$, spread $)$ takes two or three arguments,

P	R-by-Q matrix of Q input vectors
T	S-by-Q matrix of Q target class vectors
spread	Spread of radial basis functions (default $=0.1$)

and returns a new probabilistic neural network.
If spread is near zero, the network acts as a nearest neighbor classifier. As spread becomes larger, the designed network takes into account several nearby design vectors.

Examples

Here a classification problem is defined with a set of inputs P and class indices Tc.

```
P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];
```

The class indices are converted to target vectors, and a PNN is designed and tested.

```
T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
```

```
Yc = vec2ind(Y)
```


More About

Algorithms

newpnn creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has compet neurons, and calculates its weighted input with dotprod and its net inputs with netsum. Only the first layer has biases.
newpnn sets the first-layer weights to P^{\prime}, and the first-layer biases are all set to 0.8326 /spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread. The second-layer weights W2 are set to T.

References

Wasserman, P.D., Advanced Methods in Neural Computing, New York, Van Nostrand Reinhold, 1993, pp. 35-55

See Also

sim | ind2vec | vec2ind | newrb | newrbe | newgrnn

newrb

Design radial basis network

Syntax

```
net = newrb(P,T,goal,spread,MN,DF)
```


Description

Radial basis networks can be used to approximate functions. newrb adds neurons to the hidden layer of a radial basis network until it meets the specified mean squared error goal.
net $=$ newrb (P, T, goal, spread, $M N, D F)$ takes two of these arguments,

P	R-by-Q matrix of Q input vectors
T	S-by-Q matrix of Q target class vectors
goal	Mean squared error goal (default $=0.0$)
spread	Spread of radial basis functions (default $=1.0$)
MN	Maximum number of neurons (default is Q)
DF	Number of neurons to add between displays (default $=25$)

and returns a new radial basis network.
The larger spread is, the smoother the function approximation. Too large a spread means a lot of neurons are required to fit a fast-changing function. Too small a spread means many neurons are required to fit a smooth function, and the network might not generalize well. Call newrb with different spreads to find the best value for a given problem.

Examples

Here you design a radial basis network, given inputs P and targets T .

```
P = [llll
T = [2.0 4.1 5.9];
net = newrb(P,T);
```

The network is simulated for a new input.

```
P = 1.5;
```

$Y=\operatorname{sim}($ net,$P)$

More About

Algorithms

newrb creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has purelin neurons, and calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated until the network's mean squared error falls below goal.

1 The network is simulated.
2 The input vector with the greatest error is found.
3 A radbas neuron is added with weights equal to that vector.
4 The purelin layer weights are redesigned to minimize error.

See Also

sim | newrbe | newgrnn | newpnn

newrbe

Design exact radial basis network

Syntax

```
net = newrbe(P,T,spread)
```


Description

Radial basis networks can be used to approximate functions. newrbe very quickly designs a radial basis network with zero error on the design vectors.
net $=$ newrbe $(P, T$, spread $)$ takes two or three arguments,

P	RxQ matrix of Q R-element input vectors
T	SxQ matrix of Q S-element target class vectors
spread	Spread of radial basis functions (default $=1.0$)

and returns a new exact radial basis network.
The larger the spread is, the smoother the function approximation will be. Too large a spread can cause numerical problems.

Examples

Here you design a radial basis network given inputs P and targets T .

```
P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);
```

The network is simulated for a new input.

```
P = 1.5;
Y = sim(net,P)
```


More About

Algorithms

newrbe creates a two-layer network. The first layer has radbas neurons, and calculates its weighted inputs with dist and its net input with netprod. The second layer has purelin neurons, and calculates its weighted input with dotprod and its net inputs with netsum. Both layers have biases.
newrbe sets the first-layer weights to P^{\prime}, and the first-layer biases are all set to 0.8326 /spread, resulting in radial basis functions that cross 0.5 at weighted inputs of +/- spread.

The second-layer weights IW $\{2,1\}$ and biases $b\{2\}$ are found by simulating the firstlayer outputs A\{1\} and then solving the following linear expression:
$[W\{2,1\} \mathrm{b}\{2\}]$ * [A\{1\}; ones] = T

See Also
sim | newrb | newgrnn | newpnn

nftool

Neural network fitting tool

Syntax

nftool

Description

nftool opens the neural network fitting tool GUI.
For more information and an example of its usage, see "Fit Data with a Neural Network".

More About

Algorithms

nftool leads you through solving a data fitting problem, solving it with a two-layer feedforward network trained with Levenberg-Marquardt.

See Also
nctool|nprtool|ntstool

nncell2mat

Combine neural network cell data into matrix

Syntax

[y,i,j] nncell2mat(x)

Description

[$y, i, j]$ nncell2mat (x) takes a cell array of matrices and returns,

y	Cell array formed by concatenating matrices
i	Array of row sizes
ji	Array of column sizes

The row and column sizes returned by nncell2mat can be used to convert the returned matrix back into a cell of matrices with mat2cell.

Examples

Here neural network data is converted to a matrix and back.

```
c = {rands(2,3) rands(2,3); rands(5,3) rands(5,3)};
[m,i,j] = nncell2mat(c)
c3 = mat2cell(m,i,j)
```


See Also

nndata|nnsize

nncorr

Crross correlation between neural network time series

Syntax

nncorr(a,b,maxlag,'flag')

Description

nncorr(a,b,maxlag,'flag') takes these arguments,

a	Matrix or cell array, with columns interpreted as timesteps, and having a total number of matrix rows of N.
b	Matrix or cell array, with columns interpreted as timesteps, and having a total number of matrix rows of M.
maxlag	Maximum number of time lags
flag	Type of normalization (default $=$ ' none ' $)$

and returns an N-by- M cell array where each $\{i, j\}$ element is a $2 *$ maxlag+1 length row vector formed from the correlations of a elements (i.e., matrix row) i and b elements (i.e., matrix column) j.

If a and b are specified with row vectors, the result is returned in matrix form.
The options for the normalization flag are:

- 'biased ' - scales the raw cross-correlation by $1 / \mathrm{N}$.
- 'unbiased ' - scales the raw correlation by $1 /(N-a b s(k))$, where k is the index into the result.
- 'coeff' - normalizes the sequence so that the correlations at zero lag are 1.0.
- 'none' - no scaling. This is the default.

Examples

Here the autocorrelation of a random 1-element, 1 -sample, 20-timestep signal is calculated with a maximum lag of 10 .
$\mathrm{a}=\operatorname{nndata}(1,1,20)$
$\mathrm{aa}=\operatorname{nncorr}(\mathrm{a}, \mathrm{a}, 10)$
Here the cross-correlation of the first signal with another random 2 -element signal are found, with a maximum lag of 8 .
b $=$ nndata $(2,1,20)$
$a b=\operatorname{nncorr}(a, b, 8)$

See Also

confusion | regression

nndata

Create neural network data

Syntax

```
nndata(N,Q,TS,v)
```


Description

nndata ($N, Q, T S, v$) takes these arguments,

N	Vector of M element sizes
Q	Number of samples
TS	Number of timesteps
V	Scalar value

and returns an M-by-TS cell array where each row i has N (i)-by-Q sized matrices of value v. If v is not specified, random values are returned.

You can access subsets of neural network data with getelements, getsamples, gettimesteps, and getsignals.

You can set subsets of neural network data with setelements, setsamples, settimesteps, and setsignals.

You can concatenate subsets of neural network data with catelements, catsamples, cattimesteps, and catsignals.

Examples

Here four samples of five timesteps, for a 2 -element signal consisting of zero values is created:
$\mathrm{x}=$ nndata $(2,4,5,0)$

To create random data with the same dimensions:
x = nndata(2,4,5)
Here static (1 timestep) data of 12 samples of 4 elements is created.
$x=\operatorname{nndata}(4,12)$

See Also

nnsize | tonndata | fromnndata | nndata2sim | sim2nndata

nndata2gpu

Format neural data for efficient GPU training or simulation

Syntax

```
nndata2gpu(x)
[Y,Q,N,TS] = nndata2gpu(X)
nndata2gpu(X,PRECISION)
```


Description

nndata2gpu requires Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.
nndata2gpu (x) takes an N-by- Q matrix X of $Q N$-element column vectors, and returns it in a form for neural network training and simulation on the current GPU device.

The N-by- Q matrix becomes a QQ-by-N gpuArray where $Q Q$ is Q rounded up to the next multiple of 32 . The extra rows $(Q+1): Q Q$ are filled with $N a N$ values. The gpuArray has the same precision ('single' or 'double') as X.
$[Y, Q, N, T S]=$ nndata2gpu(X) can also take an M-by-TS cell array of M signals over TS time steps. Each element of X\{i, ts \} should be an Ni-by-Q matrix of Q Ni-element vectors, representing the ith signal vector at time step ts, across all Q time series. In this case, the gpuArray Y returned is QQ-by-(sum (Ni)*TS). Dimensions Ni, Q, and TS are also returned so they can be used with gpu2nndata to perform the reverse formatting.
nndata2gpu(X, PRECISION) specifies the default precision of the gpuArray, which can be 'double' or 'single'.

Examples

Copy a matrix to the GPU and back:

```
x = rand(5,6)
[y,q] = nndata2gpu(x)
```

```
x2 = gpu2nndata(y,q)
```

Copy neural network cell array data, representing four time series, each consisting of five time steps of 2 -element and 3 -element signals:

```
x = nndata([2;3],4,5)
[y,q,n,ts] = nndata2gpu(x)
x2 = gpu2nndata(y,q,n,ts)
```


See Also

gpu2nndata

nndata2sim

Convert neural network data to Simulink time series

Syntax

```
nndata2sim(x,i,q)
```


Description

nndata2sim($x, i, q)$ takes these arguments,

x	Neural network data
i	Index of signal (default $=1$)
\mathbf{q}	Index of sample (default $=1$)

and returns time series q of signal i as a Simulink time series structure.

Examples

Here random neural network data is created with two signals having 4 and 3 elements respectively, over 10 timesteps. Three such series are created.
$x=$ nndata $([4 ; 3], 3,10)$;
Now the second signal of the first series is converted to Simulink form.
y_2_1 = nndata2sim(x, 2, 1)

See Also

nndata | sim2nndata | nnsize

nnsize

Number of neural data elements, samples, timesteps, and signals

Syntax

$[N, Q, T S, M]=n n s i z e(X)$

Description

$[N, Q, T S, M]=n n s i z e(X)$ takes neural network data X and returns,

N	Vector containing the number of element sizes for each of M signals
Q	Number of samples
TS	Number of timesteps
M	Number of signals

If X is a matrix, N is the number of rows of X, Q is the number of columns, and both TS and M are 1 .

If X is a cell array, N is an $S \times 1$ vector, where M is the number of rows in X, and $N(i)$ is the number of rows in $X\{i, 1\}$. Q is the number of columns in the matrices in X.

Examples

This code gets the dimensions of matrix data:

```
x = [1 2 3; 4 7 4]
[n,q,ts,s] = nnsize(x)
```

This code gets the dimensions of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
[n,q,ts,s] = nnsize(x)
```


See Also

nndata | numelements | numsamples | numsignals | numtimesteps

nnstart

Neural network getting started GUI

Syntax

nnstart

Description

nnstart opens a window with launch buttons for neural network fitting, pattern recognition, clustering and time series tools. It also provides links to lists of data sets, examples, and other useful information for getting started. See specific topics on "Getting Started with Neural Network Toolbox".

See Also
nctool|nftool|nprtool|ntstool

nntool

Open Network/Data Manager

Syntax

nntool

Description

nntool opens the Network/Data Manager window, which allows you to import, create, use, and export neural networks and data.

Note Although it is still available, nntool is no longer recommended. Instead, use nnstart, which provides graphical interfaces that allow you to design and deploy fitting, pattern recognition, clustering, and time-series neural networks.

See Also
nnstart

nntraintool

Neural network training tool

Syntax

nntraintool
nntraintool close
nntraintool('close')

Description

nntraintool opens the neural network training GUI.
This function can be called to make the training GUI visible before training has occurred, after training if the window has been closed, or just to bring the training GUI to the front.

Network training functions handle all activity within the training window.
To access additional useful plots, related to the current or last network trained, during or after training, click their respective buttons in the training window.
nntraintool close or nntraintool('close') closes the training window.

noloop

Remove neural network open- and closed-loop feedback

Syntax

```
net = noloop(net)
```


Description

net $=$ noloop(net) takes a neural network and returns the network with open- and closed-loop feedback removed.

For outputs i, where net.outputs\{i\}.feedbackMode is 'open', the feedback mode is set to 'none', outputs\{i\}.feedbackInput is set to the empty matrix, and the associated network input is deleted.

For outputs i, where net.outputs\{i\}.feedbackMode is 'closed', the feedback mode is set to 'none'.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai)
```

Now the network is converted to no loop form. The output and second input are no longer associated.

```
net = noloop(net);
```

view(net)
[Xs,Xi,Ai] = preparets(net,X,T); $Y=\operatorname{net}(X s, X i, A i)$

See Also

closeloop | openloop

normc

Normalize columns of matrix

Syntax

normc (M)

Description

normc (M) normalizes the columns of M to a length of 1 .

Examples

```
m = [1 2; 3 4];
normc(m)
ans =
    0.3162 0.4472
    0.9487 0.8944
```


See Also

normr

normprod

Normalized dot product weight function

Syntax

```
Z = normprod(W,P,FP)
dim = normprod('size',S,R,FP)
dw = normprod('dz_dw',W,P,Z,FP)
```


Description

normprod is a weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=$ normprod $(W, P, F P)$ takes these inputs,

W	S-by-R weight matrix
P	R-by-Q matrix of Q input (column) vectors
FP	Row cell array of function parameters (optional, ignored)

and returns the S-by-Q matrix of normalized dot products.
dim $=$ normprod('size', $S, R, F P$) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [S-by-R].
$d w=$ normprod('dz_dw', $W, P, Z, F P)$ returns the derivative of Z with respect to W.

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

```
W = rand (4,3);
P = rand (3,1);
Z = normprod(W,P)
```


Network Use

You can create a standard network that uses normprod by calling newgrnn.
To change a network so an input weight uses normprod, set net.inputWeight $\{i, j\}$. weightFcn to 'normprod'. For a layer weight, set net.layerWeight $\{\mathrm{i}, \mathrm{j}\}$. weightFcn to 'normprod'.

In either case, call sim to simulate the network with normprod. See newgrnn for simulation examples.

More About

Algorithms

normprod returns the dot product normalized by the sum of the input vector elements.
$z=w * p / \operatorname{sum}(p)$

See Also
 dotprod

normr

Normalize rows of matrix

Syntax

normr(M)

Description

normr (M) normalizes the rows of M to a length of 1 .

Examples

```
m = [1 2; 3 4];
normr(m)
ans =
    0.4472 0.8944
    0.6000 0.8000
```


See Also

normc

nprtool

Neural network pattern recognition tool

Syntax

nprtool

Description

nprtool opens the neural network pattern recognition tool.
For more information and an example of its usage, see "Classify Patterns with a Neural Network".

More About

Algorithms

nprtool leads you through solving a pattern-recognition classification problem using a two-layer feed-forward patternnet network with sigmoid output neurons.

See Also
nctool | nftool | ntstool

ntstool

Neural network time series tool

Syntax

```
ntstool
ntstool('close')
```


Description

ntstool opens the neural network time series tool and leads you through solving a fitting problem using a two-layer feed-forward network.

For more information and an example of its usage, see "Neural Network Time Series Prediction and Modeling".
ntstool('close') closes the tool.

See Also
nctool | nftool | nprtool

num2deriv

Numeric two-point network derivative function

Syntax

num2deriv('dperf_dwb', net, X, T, Xi, Ai, EW)
num2deriv('de_dw' ', net, $X, T, X i, A i, E W)$

Description

This function calculates derivatives using the two-point numeric derivative rule.

$$
\frac{d y}{d x}=\frac{y(x+d x)-y(x)}{d x}
$$

This function is much slower than the analytical (non-numerical) derivative functions, but is provided as a means of checking the analytical derivative functions. The other numerical function, num5deriv, is slower but more accurate.
num2deriv('dperf_dwb', net , X, T, Xi, Ai , EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
num2deriv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num2deriv('dperf_dwb',net,x,t)
```


See Also

bttderiv | defaultderiv | fpderiv | num5deriv | staticderiv

num5deriv

Numeric five-point stencil neural network derivative function

Syntax

num5deriv('dperf_dwb', net, X, T, Xi, Ai, EW)
num5deriv('de_dwb', net, X, T, Xi, Ai, EW)

Description

This function calculates derivatives using the five-point numeric derivative rule.

$$
\begin{aligned}
& y_{1}=y(x+2 d x) \\
& y_{2}=y(x+d x) \\
& y_{3}=y(x-d x) \\
& y_{4}=y(x-2 d x) \\
& \frac{d y}{d x}=\frac{y 1-8 y_{2}+8 y_{3}-y_{4}}{d x}
\end{aligned}
$$

This function is much slower than the analytical (non-numerical) derivative functions, but is provided as a means of checking the analytical derivative functions. The other numerical function, num2deriv, is faster but less accurate.
num5deriv('dperf_dwb' , net, $\mathrm{X}, \mathrm{T}, \mathrm{Xi}, \mathrm{Ai}, \mathrm{EW})$ takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
num5deriv('de_dwb', net, X, T, Xi, Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
dwb = num5deriv('dperf_dwb',net,x,t)
```

See Also
bttderiv | defaultderiv | fpderiv | num2deriv | staticderiv

numelements

Number of elements in neural network data

Syntax

numelements(x)

Description

numelements (x) takes neural network data x in matrix or cell array form, and returns the number of elements in each signal.

If x is a matrix the result is the number of rows of x.
If x is a cell array the result is an S-by- 1 vector, where S is the number of signals (i.e., rows of X), and each element $S(i)$ is the number of elements in each signal i (i.e., rows of $x\{i, 1\}$).

Examples

This code calculates the number of elements represented by matrix data:

```
x = [lllllllll
n = numelements(x)
```

This code calculates the number of elements represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numelements(x)
```


See Also

nndata | nnsize | getelements | setelements | catelements | numsamples | numsignals | numtimesteps

numfinite

Number of finite values in neural network data

Syntax

numfinite(x)

Description

numfinite (x) takes a matrix or cell array of matrices and returns the number of finite elements in it.

Examples

$\mathrm{x}=[12 ; 3 \mathrm{NaN}]$
n = numfinite(x)
x $=\{[12 ; 3 \mathrm{NaN}][5 \mathrm{NaN} ; \mathrm{NaN}$ 8]\}
n = numfinite(x)

See Also
numnan | nndata | nnsize

numnan

Number of NaN values in neural network data

Syntax

```
numnan (x)
```


Description

numnan (x) takes a matrix or cell array of matrices and returns the number of NaN elements in it.

Examples

$\mathrm{x}=[12 ; 3 \mathrm{NaN}]$
$\mathrm{n}=$ numnan (x)
x = \{[1 2; 3 NaN] [5 NaN; NaN 8]\}
$\mathrm{n}=$ numnan(x)

See Also
numnan | nndata | nnsize

numsamples

Number of samples in neural network data

Syntax

numsamples(x)

Description

numsamples (x) takes neural network data x in matrix or cell array form, and returns the number of samples.

If x is a matrix, the result is the number of columns of x.
If x is a cell array, the result is the number of columns of the matrices in x .

Examples

This code calculates the number of samples represented by matrix data:

```
x = [1 2 3; 4 7 4]
n = numsamples(x)
```

This code calculates the number of samples represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsamples(x)
```


See Also

nndata | nnsize | getsamples | setsamples | catsamples | numelements | numsignals | numtimesteps

numsignals

Number of signals in neural network data

Syntax

numsignals(x)

Description

numsignals (x) takes neural network data x in matrix or cell array form, and returns the number of signals.

If x is a matrix, the result is 1 .
If x is a cell array, the result is the number of rows in x.

Examples

This code calculates the number of signals represented by matrix data:

```
x = [1 2 3; 4 7 4]
n = numsignals(x)
```

This code calculates the number of signals represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numsignals(x)
```

```
See Also
nndata | nnsize | getsignals | setsignals | catsignals | numelements |
numsamples | numtimesteps
```


numtimesteps

Number of time steps in neural network data

Syntax

numtimesteps(x)

Description

numtimesteps (x) takes neural network data x in matrix or cell array form, and returns the number of signals.

If x is a matrix, the result is 1 .
If x is a cell array, the result is the number of columns in x.

Examples

This code calculates the number of time steps represented by matrix data:

```
x = [1 2 3; 4 7 4]
n = numtimesteps(x)
```

This code calculates the number of time steps represented by cell data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
n = numtimesteps(x)
```


See Also

nndata|nnsize | gettimesteps | settimesteps | cattimesteps | numelements | numsamples | numsignals

openloop

Convert neural network closed-loop feedback to open loop

Syntax

```
net = openloop(net)
[net,xi,ai] = openloop(net,xi,ai)
```


Description

net $=$ openloop (net) takes a neural network and opens any closed-loop feedback. For each feedback output i whose property net. outputs\{i\}.feedbackMode is 'closed', it replaces its associated feedback layer weights with a new input and input weight connections. The net.outputs\{i\}.feedbackMode property is set to 'open', and the net. outputs\{i\}.feedbackInput property is set to the index of the new input. Finally, the value of net. outputs\{i\}.feedbackDelays is subtracted from the delays of the feedback input weights (i.e., to the delays values of the replaced layer weights).
[net, xi,ai] = openloop(net,xi,ai) converts a closed-loop network and its current input delay states xi and layer delay states ai to open-loop form.

Examples

Convert NARX Network to Open-Loop Form

Here a NARX network is designed in open-loop form and then converted to closed-loop form, then converted back.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Yopen = net(Xs,Xi,Ai)
net = closeloop(net)
```

```
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yclosed = net(Xs,Xi,Ai);
net = openloop(net)
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
Yopen = net(Xs,Xi,Ai)
```


Convert Delay States

For examples on using closeloop and openloop to implement multistep prediction, see narxnet and narnet.

See Also
closeloop | narnet | narxnet | noloop

patternnet

Pattern recognition network

Syntax

patternnet(hiddenSizes,trainFcn, performFcn)

Description

Pattern recognition networks are feedforward networks that can be trained to classify inputs according to target classes. The target data for pattern recognition networks should consist of vectors of all zero values except for a 1 in element i, where i is the class they are to represent.
patternnet(hiddenSizes, trainFcn, performFcn) takes these arguments,

hiddenSizes	Row vector of one or more hidden layer sizes (default = $10)$
trainFcn	Training function (default = 'trainscg ')
performFcn	Performance function (default = 'crossentropy ')

and returns a pattern recognition neural network.

Examples

Pattern Recognition

This example shows how to design a pattern recognition network to classify iris flowers.

```
[x,t] = iris_dataset;
net = patternnet(10);
net = train(net,x,t);
view(net)
y = net(x);
```

perf = perform(net,t,y);
classes $=$ vec2ind(y);

See Also

lvqnet | competlayer | nprtool | selforgmap

perceptron

Perceptron

Syntax

perceptron(hardlimitTF, perceptronLF)

Description

Perceptrons are simple single-layer binary classifiers, which divide the input space with a linear decision boundary.

Perceptrons can learn to solve a narrow range of classification problems. They were one of the first neural networks to reliably solve a given class of problem, and their advantage is a simple learning rule.
perceptron(hardlimitTF, perceptronLF) takes these arguments,

hardlimitTF	Hard limit transfer function (default = 'hardlim')
perceptronLF	Perceptron learning rule $($ default = 'learnp')

and returns a perceptron.
In addition to the default hard limit transfer function, perceptrons can be created with the hardlims transfer function. The other option for the perceptron learning rule is learnpn.

Note Neural Network Toolbox supports perceptrons for historical interest. For better results, you should instead use patternnet, which can solve nonlinearly separable problems. Sometimes the term "perceptrons" refers to feed-forward pattern recognition networks; but the original perceptron, described here, can solve only simple problems.

Examples

Use a perceptron to solve a simple classification logical-OR problem.

```
x = [0 0 1 1; 0 1 0 1];
t = [lllll
net = perceptron;
net = train(net,x,t);
view(net)
y = net(x);
```


See Also
preparets | removedelay | patternnet | timedelaynet | narnet | narxnet

perform

Calculate network performance

Syntax

perform(net, $\mathrm{t}, \mathrm{y}, \mathrm{ew}$)

Description

perform(net, $\mathrm{t}, \mathrm{y}, \mathrm{ew})$ takes these arguments,

net	Neural network
t	Target data
y	Output data
ew	Error weights (default $=\{1\}$)

and returns network performance calculated according to the net. performFcn and net. performParam property values.

The target and output data must have the same dimensions. The error weights may be the same dimensions as the targets, in the most general case, but may also have any of its dimension be 1 . This gives the flexibilty of defining error weights across any dimension desired.

Error weights can be defined by sample, output element, time step, or network output:

```
ew = [1.0 0.5 0.7 0.2]; % Across 4 samples
ew = [0.1; 0.5; 1.0]; % Across 3 elements
ew = {0.1 0.2 0.3 0.5 1.0}; % Across 5 timesteps
ew = {1.0; 0.5}; % Across 2 outputs
```

The may also be defined across any combination, such as across two time-series (i.e. two samples) over four timesteps.

```
ew = {[0.5 0.4],[0.3 0.5],[1.0 1.0],[0.7 0.5]};
```

In the general case, error weights may have exactly the same dimensions as targets, in which case each target value will have an associated error weight.

The default error weight treats all errors the same.
ew = \{1\}

Examples

Here a simple fitting problem is solved with a feed-forward network and its performance calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y)
```


See Also

train | configure | init

plotconfusion

Plot classification confusion matrix

Syntax

```
plotconfusion(targets,outputs)
plotconfusion(targets1,outputs1,'name1',...)
```


Description

plotconfusion(targets, outputs) displays the classification confusion grid.
plotconfusion(targets1, outputs1, 'name1', ...) displays a series of plots.

Examples

```
load simpleclass_dataset
net = patternnet(20);
net = train(net,simpleclassInputs,simpleclassTargets);
simpleclassOutputs = sim(net,simpleclassInputs);
plotconfusion(simpleclassTargets,simpleclassOutputs);
```


plotep

Plot weight-bias position on error surface

Syntax

$$
\begin{aligned}
& H=\operatorname{plotep}(W, B, E) \\
& H=\operatorname{plotep}(W, B, E, H)
\end{aligned}
$$

Description

plotep is used to show network learning on a plot created by plotes.
$H=p l o t e p(W, B, E)$ takes these arguments,

W	Current weight value
B	Current bias value
E	Current error

and returns a cell array H , containing information for continuing the plot.
$H=p l o t e p(W, B, E, H)$ continues plotting using the cell array H returned by the last call to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted next time; as well as points on the error contour, so they can be connected.

See Also
errsurf | plotes

ploterrcorr

Plot autocorrelation of error time series

Syntax

```
ploterrcorr(error)
ploterrcorr(errors,'outputIndex',outIdx)
```


Description

ploterrcorr (error) takes an error time series and plots the autocorrelation of errors across varying lags.
ploterrcorr(errors, 'outputIndex', outIdx) uses the optional property name/ value pair to define which output error autocorrelation is plotted. The default is 1 .

Examples

Here a NARX network is used to solve a time series problem.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
```

See Also
plotinerrcorr | plotresponse

ploterrhist

Plot error histogram

Syntax

```
ploterrhist(e)
ploterrhist(e1,'name1',e2,'name2',...)
ploterrhist(...,'bins',bins)
```


Description

ploterrhist (e) plots a histogram of error values e.
ploterrhist(e1,'name1', e2, 'name2',...) takes any number of errors and names and plots each pair.
ploterrhist(..., 'bins', bins) takes an optional property name/value pair which defines the number of bins to use in the histogram plot. The default is 20 .

Examples

Here a feedforward network is used to solve a simple fitting problem:

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
e = t - y;
ploterrhist(e,'bins',30)
```


See Also

plotconfusion | ploterrcorr | plotinerrcorr

plotes

Plot error surface of single-input neuron

Syntax

```
plotes(WV,BV,ES,V)
```


Description

plotes (WV, BV, ES, V) takes these arguments,

WV	1-by-N row vector of values of W
BV	1-by-M row vector of values of B
ES	M-by-N matrix of error vectors
V	View (default $=[-37.5,30]$)

and plots the error surface with a contour underneath.
Calculate the error surface ES with errsurf.

Examples

p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4;
bv = wv;
ES = errsurf($p, t, w v, b v,{ }^{\prime}$ logsig');
plotes(wv,bv,ES,[60 30])

See Also
errsurf

ploffit

Plot function fit

Syntax

plotfit(NET, INPUTS, TARGETS)
plotfit(targets1,inputs1,'name1',...)

Description

plotfit(NET, INPUTS, TARGETS) plots the output function of a network across the range of the inputs INPUTS and also plots target TARGETS and output data points associated with values in INPUTS. Error bars show the difference between outputs and INPUTS.

The plot appears only for networks with one input.
Only the first output/targets appear if the network has more than one output.
plotfit(targets1, inputs1, 'name1', ...) displays a series of plots.

Examples

```
load simplefit_dataset
net = fitnet(20})
[net,tr] = train(net,simplefitInputs,simplefitTargets);
plotfit(net,simplefitInputs,simplefitTargets);
```

See Also
plottrainstate

plotinerrcorr

Plot input to error time-series cross correlation

Syntax

```
plotinerrcorr(x,e)
plotinerrcorr(...,'inputIndex',inputIndex)
plotinerrcorr(...,'outputIndex',outputIndex)
```


Description

plotinercorr (x, e) takes an input time series x and an error time series e , and plots the autocorrelation of inputs to errors across varying lags.
plotinerrcorr(...,'inputIndex', inputIndex) optionally defines which input element is being correlated and plotted. The default is 1 .
plotinerrcorr(..., 'outputIndex', outputIndex) optionally defines which error element is being correlated and plotted. The default is 1 .

Examples

Here a NARX network is used to solve a time series problem.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
E = gsubtract(Ts,Y);
ploterrcorr(E)
plotinerrcorr(Xs,E)
```


See Also

ploterrcorr | plotresponse | ploterrhist

plotpc

Plot classification line on perceptron vector plot

Syntax

```
plotpc(W,B)
plotpc(W,B,H)
```


Description

plotpc (W, B) takes these inputs,

W	S-by-R weight matrix (R must be 3 or less)
B	S-by-1 bias vector

and returns a handle to a plotted classification line.
plotpc ($\mathrm{W}, \mathrm{B}, \mathrm{H}$) takes an additional input,

H	Handle to last plotted line

and deletes the last line before plotting the new one.
This function does not change the current axis and is intended to be called after plotpv.

Examples

The code below defines and plots the inputs and targets for a perceptron:

```
p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
```

The following code creates a perceptron with inputs ranging over the values in P , assigns values to its weights and biases, and plots the resulting classification line.

```
net = newp(minmax (p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})
```


See Also

plotpv

plotperform

Plot network performance

Syntax

plotperform(TR)

Description

plotperform(TR) plots the training, validation, and test performances given the training record TR returned by the function train.

Examples

Plot Performances

```
[x,t] = house_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plotperform(tr)
```

Best Validation Performance is 12.331 at epoch 14

See Also
plottrainstate

plotpv

Plot perceptron input/target vectors

Syntax

```
plotpv(P,T)
plotpv(P,T,V)
```


Description

plotpv (P, T) takes these inputs,

P	R-by-Q matrix of input vectors (R must be 3 or less)
T	S-by-Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T.
plotpv ($\mathrm{P}, \mathrm{T}, \mathrm{V}$) takes an additional input,

```
V 年 Graph limits = [x_min x_max y_min y_max]
```

and plots the column vectors with limits set by V .

Examples

The code below defines and plots the inputs and targets for a perceptron:

```
p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)
```

The following code creates a perceptron with inputs ranging over the values in P , assigns values to its weights and biases, and plots the resulting classification line.

```
net = newp(minmax(p),1);
```

```
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})
```


See Also

plotpc

plotregression

Plot linear regression

Syntax

plotregression(targets,outputs)
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...)

Description

plotregression(targets, outputs) plots the linear regression of targets relative to outputs.
plotregression(targs1,outs1,'name1',targs2,outs2,'name2',...) generates multiple plots.

Examples

Plot Linear Regression

```
[x,t] = simplefit_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
plotregression(t,y,'Regression')
```

Regression: $\mathbf{R = 0 . 9 9 9 9 9}$

See Also

plottrainstate

plotresponse

Plot dynamic network time series response

Syntax

```
plotresponse(t,y)
plotresponse(t1,'name',t2,'name2',...,y)
plotresponse(...,'outputIndex',outputIndex)
```


Description

plotresponse (t, y) takes a target time series t and an output time series y , and plots them on the same axis showing the errors between them.
plotresponse(t1,'name',t2, 'name2', ...,y) takes multiple target/name pairs, typically defining training, validation and testing targets, and the output. It plots the responses with colors indicating the different target sets.
plotresponse(...,'outputIndex',outputIndex) optionally defines which error element is being correlated and plotted. The default is 1 .

Examples

Here a NARX network is used to solve a time series problem.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
Y = net(Xs,Xi,Ai);
plotresponse(Ts,Y)
```

```
See Also
ploterrcorr | plotinerrcorr | ploterrhist
```


plotroc

Plot receiver operating characteristic

Syntax

plotroc(targets,outputs)
plotroc(targets1,outputs2,'name1',...)

Description

plotroc (targets, outputs) plots the receiver operating characteristic for each output class. The more each curve hugs the left and top edges of the plot, the better the classification.
plotroc(targets1,outputs2,'name1',...) generates multiple plots.

Examples

Plot Receiver Operating Characteristic

```
load simplecluster_dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs)
```


See Also

roc

plotsom

Plot self-organizing map

Syntax

plotsom(pos)
plotsom(W, D,ND)

Description

plotsom(pos) takes one argument,

POS	N-by-S matrix of S N-dimension neural positions

and plots the neuron positions with red dots, linking the neurons within a Euclidean distance of 1 .
plotsom (W, D, ND) takes three arguments,

W	S-by-R weight matrix
D	S-by-S distance matrix
ND	Neighborhood distance (default = 1)

and plots the neuron's weight vectors with connections between weight vectors whose neurons are within a distance of 1 .

Examples

This code generates plots of various layer topologies.

```
pos = hextop(5,6); plotsom(pos)
pos = gridtop(4,5); plotsom(pos)
pos = randtop(18,12); plotsom(pos)
pos = gridtop(4,5,2); plotsom(pos)
pos = hextop(4,4,3); plotsom(pos)
```

See newsom for an example of plotting a layer's weight vectors with the input vectors they map.

See Also

learnsom

plotsomhits

Plot self-organizing map sample hits

Syntax

plotsomhits(net,inputs)

Description

plotsomhits(net, inputs) plots a SOM layer, with each neuron showing the number of input vectors that it classifies. The relative number of vectors for each neuron is shown via the size of a colored patch.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Sample Hits

```
x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomhits(net,x)
```


See Also

plotsomplanes

plotsomnc

Plot self-organizing map neighbor connections

Syntax

plotsomnc(net)

Description

plotsomnc (net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor relations with red lines.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Neighbor Connections

```
x = iris_dataset;
net = selforgmap([8 8]);
net = train(net,x);
plotsomnc(net)
```


See Also

plotsomnd | plotsomplanes | plotsomhits

plotsomnd

Plot self-organizing map neighbor distances

Syntax

plotsomnd(net)

Description

plotsomnd (net) plots a SOM layer showing neurons as gray-blue patches and their direct neighbor relations with red lines. The neighbor patches are colored from black to yellow to show how close each neuron's weight vector is to its neighbors.

This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Neighbor Distances

```
x = iris_dataset;
net = selforgmap([5 5]);
net = train(net,x);
plotsomnd(net)
```


See Also

plotsomhits | plotsomnc | plotsomplanes

plotsomplanes

Plot self-organizing map weight planes

Syntax

plotsomplanes(net)

Description

plotsomplanes (net) generates a set of subplots. Each ith subplot shows the weights from the ith input to the layer's neurons, with the most negative connections shown as blue, zero connections as black, and the strongest positive connections as red.

The plot is only shown for layers organized in one or two dimensions.
This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

This function can also be called with standardized plotting function arguments used by the function train.

Examples

Plot SOM Weight Planes

```
x = iris_dataset;
net = se\overline{lforgmap([5 5]);}
net = train(net,x);
plotsomplanes(net)
```


Weights from Input 3

Weights from Input 2

Weights from Input 4

See Also

plotsomhits | plotsomnc | plotsomnd

plotsompos

Plot self-organizing map weight positions

Syntax

plotsompos(net)
plotsompos(net,inputs)

Description

plotsompos (net) plots the input vectors as green dots and shows how the SOM classifies the input space by showing blue-gray dots for each neuron's weight vector and connecting neighboring neurons with red lines.
plotsompos(net,inputs) plots the input data alongside the weights.

Examples

Plot SOM Weight Positions

```
x = iris_dataset;
net = selforgmap([10 10]);
net = train(net,x);
plotsompos(net,x)
```


See Also

plotsomnd | plotsomplanes | plotsomhits

plotsomtop

Plot self-organizing map topology

Syntax

plotsomtop(net)

Description

plotsomtop (net) plots the topology of a SOM layer.
This plot supports SOM networks with hextop and gridtop topologies, but not tritop or randtop.

Examples

Plot SOM Topology

```
x = iris_dataset;
net = sel}forgmap([8 8])
plotsomtop(net)
```


See Also

plotsomnd | plotsomplanes | plotsomhits

plottrainstate

Plot training state values

Syntax

plottrainstate(tr)

Description

plottrainstate(tr) plots the training state from a training record tr returned by train.

Examples

Plot Training State Values

```
[x,t] = house_dataset;
net = feedforwardnet(10);
[net,tr] = train(net,x,t);
plottrainstate(tr)
```


See Also

plotfit | plotperform | plotregression

plotv

Plot vectors as lines from origin

Syntax

```
plotv(M,T)
```


Description

plotv (M, T) takes two inputs,

M	R-by-Q matrix of Q column vectors with R elements
T	The line plotting type (optional; default $=$ ' - ')

and plots the column vectors of M .
R must be 2 or greater. If R is greater than 2, only the first two rows of M are used for the plot.

Examples

```
plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')
```


plotvec

Plot vectors with different colors

Syntax

plotvec (X,C,M)

Description

plotvec (X, C, M) takes these inputs,

X	Matrix of (column) vectors
C	Row vector of color coordinates
M	Marker (default $=^{\prime}+'$)

and plots each ith vector in X with a marker M , using the ith value in C as the color coordinate.
plotvec (X) only takes a matrix X and plots each ith vector in X with marker ' + ' using the index i as the color coordinate.

Examples

```
x = [0 1 0.5 0.7; -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)
```


plotwb

Plot Hinton diagram of weight and bias values

Syntax

```
plotwb(net)
plotwb(IW, LW,B)
plotwb(...,'toLayers',toLayers)
plotwb(...,'fromInputs',fromInputs)
plotwb(...,'fromLayers',fromLayers)
plotwb(...,'root',root)
```


Description

plotwb (net) takes a neural network and plots all its weights and biases.
plotwb (IW, LW, B) takes a neural networks input weights, layer weights and biases and plots them.
plotwb(...,'toLayers', toLayers) optionally defines which destination layers whose input weights, layer weights and biases will be plotted.
plotwb(...,'fromInputs', fromInputs) optionally defines which inputs will have their weights plotted.
plotwb(..., 'fromLayers', fromLayers) optionally defines which layers will have weights coming from them plotted.
plotwb(..., 'root', root) optionally defines the root used to scale the weight/bias patch sizes. The default is 2 , which makes the 2 -dimensional patch sizes scale directly with absolute weight and bias sizes. Larger values of root magnify the relative patch sizes of smaller weights and biases, making differences in smaller values easier to see.

Examples

Here a cascade-forward network is configured for particular data and its weights and biases are plotted in several ways.

```
[x,t] = simplefit_dataset;
net = cascadeforwardnet([15 5]);
net = configure(net,x,t);
plotwb(net)
plotwb(net,'root',3)
plotwb(net,'root',4)
plotwb(net,'toLayers',2)
plotwb(net,'fromLayers',1)
plotwb(net,'toLayers',2,'fromInputs',1)
```


See Also

plotsomplanes

pnormc

Pseudonormalize columns of matrix

Syntax

pnormc (X,R)

Description

pnormc (X, R) takes these arguments,

X	M-by-N matrix
R	(Optional) radius to normalize columns to (default $=1$)

and returns X with an additional row of elements, which results in new column vector lengths of R.

Caution For this function to work properly, the columns of X must originally have vector lengths less than R.

Examples

$\mathrm{x}=[0.10 .6 ; 0.30 .1]$;
$\mathrm{y}=\operatorname{pnormc}(\mathrm{x})$

See Also

normc | normr

poslin

Positive linear transfer function

Graph and Symbol

$a=\operatorname{poslin}(n)$
Positive Linear Transfer Function

Syntax

```
A = poslin(N,FP)
info = poslin('code')
```


Description

poslin is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{poslin}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements clipped to [0, inf].
info $=$ poslin('code') returns information about this function. The following codes are supported:
poslin('name') returns the name of this function.
poslin('output', FP) returns the [min max] output range.
poslin('active', FP) returns the [min max] active range.
poslin('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
poslin('fpnames') returns the names of the function parameters.
poslin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the poslin transfer function.

```
n = -5:0.1:5;
a = poslin(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'poslin';
```


Network Use

To change a network so that a layer uses poslin, set net.layers\{i\}.transferFcn to 'poslin'.

Call sim to simulate the network with poslin.

More About

Algorithms

The transfer function poslin returns the output n if n is greater than or equal to zero and 0 if n is less than or equal to zero.

$$
\begin{aligned}
\operatorname{poslin}(n) & =n, \text { if } n>=0 \\
& =0, \text { if } n<=0
\end{aligned}
$$

See Also

sim | purelin | satlin | satlins

preparets

Prepare input and target time series data for network simulation or training

Syntax

[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW)

Description

This function simplifies the normally complex and error prone task of reformatting input and target time series. It automatically shifts input and target time series as many steps as are needed to fill the initial input and layer delay states. If the network has open loop feedback, then it copies feedback targets into the inputs as needed to define the open loop inputs.

Each time a new network is designed, with different numbers of delays or feedback settings, preparets can be called to reformat input and target data accordingly. Also, each time a network is transformed with openloop, closeloop, removedelay or adddelay, this function can reformat the data accordingly.
[Xs,Xi,Ai,Ts,EWs,shift] = preparets(net,Xnf,Tnf,Tf,EW) takes these arguments,

net	Neural network
Xnf	Non-feedback inputs
Tnf	Non-feedback targets
Tf	Feedback targets
EW	Error weights (default $=\{1\}$)

and returns,

Xs	Shifted inputs
Xi	Initial input delay states
Ai	Initial layer delay states

Ts	Shifted targets
EWs	Shifted error weights
shift	The number of timesteps truncated from the front of X and T in order to properly fill Xi and Ai.

Examples

Here a time-delay network with 20 hidden neurons is created, trained and simulated.

```
net = timedelaynet(20);
view(net)
[X,T] = simpleseries_dataset;
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts);
Y = net(Xs,Xi,Ai)
```

Here a NARX network is designed. The NARX network has a standard input and an open-loop feedback output to an associated feedback input.

```
[X,T] = simplenarx_dataset;
net = narxnet(1:2,1:2,20);
view(net)
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts,Xi,Ai);
y = net(Xs,Xi,Ai);
```

Now the network is converted to closed loop, and the data is reformatted to simulate the network's closed-loop response.

```
net = closeloop(net);
view(net)
[Xs,Xi,Ai] = preparets(net,X,{},T);
y = net(Xs,Xi,Ai);
```


See Also

adddelay | closeloop | narnet | narxnet | openloop | removedelay | timedelaynet

processpca

Process columns of matrix with principal component analysis

Syntax

```
[Y,PS] = processpca(X,maxfrac)
[Y,PS] = processpca(X,FP)
Y = processpca('apply',X,PS)
X = processpca('reverse',Y,PS)
name = processpca('name')
fp = processpca('pdefaults')
names = processpca('pdesc')
processpca('pcheck',fp);
```


Description

processpca processes matrices using principal component analysis so that each row is uncorrelated, the rows are in the order of the amount they contribute to total variation, and rows whose contribution to total variation are less than maxfrac are removed.
[Y, PS] = processpca(X, maxfrac) takes X and an optional parameter,

X	N-by-Q matrix or a 1-by-TS row cell array of N-by-Q matrices
maxfrac	Maximum fraction of variance for removed rows (default is 0)

and returns

Y	Each N-by-Q matrix with N - M rows deleted (optional)
PS	Process settings that allow consistent processing of values

[Y, PS] = processpca(X,FP) takes parameters as a struct: FP.maxfrac.
$Y=$ processpca('apply', $X, P S$) returns Y, given X and settings $P S$.
$X=$ processpca('reverse' $, Y, P S$) returns X, given Y and settings $P S$.
name = processpca('name') returns the name of this process method.
fp = processpca('pdefaults') returns default process parameter structure. names $=$ processpca('pdesc') returns the process parameter descriptions. processpca('pcheck', fp) ; throws an error if any parameter is illegal.

Examples

Here is how to format a matrix with an independent row, a correlated row, and a completely redundant row so that its rows are uncorrelated and the redundant row is dropped.

```
x1_independent = rand (1,5)
x1_correlated = rand(1,5) + x_independent;
x1_redundant = x_independent + x_correlated
x1 = [x1_independent; x1_correlated; x1_redundant]
[y1,ps] = processpca(x1)
```

Next, apply the same processing settings to new values.

```
x2_independent = rand (1,5)
x2_correlated = rand(1,5) + x_independent;
x2_redundant = x_independent + x_correlated
x2 = [x2_independent; x2_correlated; x2_redundant];
y2 = processpca('apply',x2,ps)
```

Reverse the processing of y 1 to get x 1 again.

```
x1_again = processpca('reverse',y1,ps)
```


Definitions

In some situations, the dimension of the input vector is large, but the components of the vectors are highly correlated (redundant). It is useful in this situation to reduce the dimension of the input vectors. An effective procedure for performing this operation is principal component analysis. This technique has three effects: it orthogonalizes the components of the input vectors (so that they are uncorrelated with each other), it orders the resulting orthogonal components (principal components) so that those with the largest variation come first, and it eliminates those components that contribute the least to the variation in the data set. The following code illustrates the use of processpca,
which performs a principal-component analysis using the processing setting maxfrac of 0.02 .

```
[pn,ps1] = mapstd(p);
[ptrans,ps2] = processpca(pn,0.02);
```

The input vectors are first normalized, using mapstd, so that they have zero mean and unity variance. This is a standard procedure when using principal components. In this example, the second argument passed to processpca is 0.02 . This means that processpca eliminates those principal components that contribute less than 2% to the total variation in the data set. The matrix ptrans contains the transformed input vectors. The settings structure ps2 contains the principal component transformation matrix. After the network has been trained, these settings should be used to transform any future inputs that are applied to the network. It effectively becomes a part of the network, just like the network weights and biases. If you multiply the normalized input vectors pn by the transformation matrix transMat, you obtain the transformed input vectors ptrans.

If processpca is used to preprocess the training set data, then whenever the trained network is used with new inputs, you should preprocess them with the transformation matrix that was computed for the training set, using ps2. The following code applies a new set of inputs to a network already trained.

```
pnewn = mapstd('apply',pnew,ps1);
pnewtrans = processpca('apply',pnewn,ps2);
a = sim(net,pnewtrans);
```

Principal component analysis is not reliably reversible. Therefore it is only recommended for input processing. Outputs require reversible processing functions.

Principal component analysis is not part of the default processing for feedforwardnet. If you wish to add this, you can use the following command:

```
net.inputs{1}.processFcns{end+1} = 'processpca';
```


More About

Algorithms

Values in rows whose elements are not all the same value are set to

```
y = 2*(x-minx)/(maxx-minx) - 1;
```

Values in rows with all the same value are set to 0.

See Also

fixunknowns | mapstd | mapminmax

prune

Delete neural inputs, layers, and outputs with sizes of zero

Syntax

```
[net,pi,pl,po] = prune(net)
```


Description

This function removes zero-sized inputs, layers, and outputs from a network. This leaves a network which may have fewer inputs and outputs, but which implements the same operations, as zero-sized inputs and outputs do not convey any information.

One use for this simplification is to prepare a network with zero sized subobjects for Simulink, where zero sized signals are not supported.

The companion function prunedata can prune data to remain consistent with the transformed network.
[net, pi,pl,po] = prune(net) takes a neural network and returns

net	The same network with zero-sized subobjects removed
pi	Indices of pruned inputs
pl	Indices of pruned layers
po	Indices of pruned outputs

Examples

Here a NARX dynamic network is created which has one external input and a second input which feeds back from the output.

```
net = narxnet(20);
view(net)
```

The network is then trained on a single random time-series problem with 50 timesteps. The external input happens to have no elements.

```
X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);
```

The network and data are then pruned before generating a Simulink diagram and initializing its input and layer states.

```
[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)
```


See Also

prunedata | gensim

prunedata

Prune data for consistency with pruned network

Syntax

[Xp,Xip,Aip,Tp] = prunedata(pi, pl, po, X, Xi, Ai, T)

Description

This function prunes data to be consistent with a network whose zero-sized inputs, layers, and outputs have been removed with prune.

One use for this simplification is to prepare a network with zero-sized subobjects for Simulink, where zero-sized signals are not supported.
[Xp,Xip,Aip,Tp] = prunedata(pi, pl, po, X,Xi, Ai, T) takes these arguments,

pi	Indices of pruned inputs
pl	Indices of pruned layers
po	Indices of pruned outputs
X	Input data
Xi	Initial input delay states
Ai	Initial layer delay states
T	Target data

and returns the pruned inputs, input and layer delay states, and targets.

Examples

Here a NARX dynamic network is created which has one external input and a second input which feeds back from the output.

```
net = narxnet(20);
```


view(net)

The network is then trained on a single random time-series problem with 50 timesteps. The external input happens to have no elements.

```
X = nndata(0,1,50);
T = nndata(1,1,50);
[Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
net = train(net,Xs,Ts);
```

The network and data are then pruned before generating a Simulink diagram and initializing its input and layer states.

```
[net2,pi,pl,po] = prune(net);
view(net)
[Xs2,Xi2,Ai2,Ts2] = prunedata(net,pi,pl,po,Xs,Xi,Ai,Ts)
[sysName,netName] = gensim(net);
setsiminit(sysName,netName,Xi2,Ai2)
```


See Also

prune | gensim

purelin

Linear transfer function

Graph and Symbol

$a=\operatorname{purelin}(n)$
Linear Transfer Function

Syntax

```
A = purelin(N,FP)
info = purelin('code')
```


Description

purelin is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=$ purelin($N, F P$) takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A , an S -by- Q matrix equal to N .
info $=$ purelin('code') returns useful information for each supported code string: purelin('name') returns the name of this function.
purelin('output', FP) returns the [min max] output range.
purelin('active', FP) returns the [min max] active input range.
purelin('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
purelin('fpnames') returns the names of the function parameters.
purelin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the purelin transfer function.

```
n = -5:0.1:5;
a = purelin(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'purelin';
```


More About

Algorithms

```
a = purelin(n) = n
```

See Also
sim | satlin | satlins

quant

Discretize values as multiples of quantity

Syntax

quant (X, Q)

Description

quant (X, Q) takes two inputs,

X	Matrix, vector, or scalar
Q	Minimum value

and returns values from X rounded to nearest multiple of Q.

Examples

```
x = [1.333 4.756 -3.897];
```

$y=$ quant $(x, 0.1)$

radbas

Radial basis transfer function

Graph and Symbol

Radial Basis Function

Syntax

$A=\operatorname{radbas}(N, F P)$

Description

radbas is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{radbas}(N, F P)$ takes one or two inputs,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N .

Examples

Here you create a plot of the radbas transfer function.

```
n = -5:0.1:5;
a = radbas(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.
net.layers\{i\}.transferFcn = 'radbas';

More About

Algorithms

$\mathrm{a}=\operatorname{radbas}(\mathrm{n})=\exp \left(-\mathrm{n}^{\wedge} 2\right)$

See Also

sim | radbasn | tribas

radbasn

Normalized radial basis transfer function

Graph and Symbol

Radial Basis Function

Syntax

$A=\operatorname{radbasn}(N, F P)$

Description

radbasn is a neural transfer function. Transfer functions calculate a layer's output from its net input. This function is equivalent to radbas, except that output vectors are normalized by dividing by the sum of the pre-normalized values.
$A=\operatorname{radbasn}(N, F P)$ takes one or two inputs,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the radial basis function applied to each element of N .

Examples

Here six random 3 -element vectors are passed through the radial basis transform and normalized.
$\mathrm{n}=\operatorname{rand}(3,6)$
$\mathrm{a}=\operatorname{radbasn}(\mathrm{n})$
Assign this transfer function to layer i of a network.
net.layers\{i\}.transferFcn = 'radbasn';

More About

Algorithms

$a=\operatorname{radbasn}(n)=\exp \left(-n^{\wedge} 2\right) / \operatorname{sum}\left(\exp \left(-n^{\wedge} 2\right)\right)$

See Also

sim | radbas | tribas

randnc

Normalized column weight initialization function

Syntax

$W=\operatorname{randnc}(S, P R)$

Description

randnc is a weight initialization function.
$W=$ randnc (S, PR) takes two inputs,

S	Number of rows (neurons)
PR	R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized columns.
You can also call this in the form randnc (S,R).

Examples

A random matrix of four normalized three-element columns is generated:

```
M = randnc(3,4)
M =
\begin{tabular}{rrrr}
-0.6007 & -0.4715 & -0.2724 & 0.5596 \\
-0.7628 & -0.6967 & -0.9172 & 0.7819 \\
-0.2395 & 0.5406 & -0.2907 & 0.2747
\end{tabular}
```


See Also

randnr

randnr

Normalized row weight initialization function

Syntax

$W=\operatorname{randnr}(S, P R)$

Description

randnr is a weight initialization function.
$W=$ randnr(S, PR) takes two inputs,

S	Number of rows (neurons)
PR	R-by-2 matrix of input value ranges = [Pmin Pmax]

and returns an S-by-R random matrix with normalized rows.
You can also call this in the form randnr (S,R).

Examples

A matrix of three normalized four-element rows is generated:

```
M = randnr(3,4)
M =
\begin{tabular}{rrrr}
0.9713 & 0.0800 & -0.1838 & -0.1282 \\
0.8228 & 0.0338 & 0.1797 & 0.5381 \\
-0.3042 & -0.5725 & 0.5436 & 0.5331
\end{tabular}
```


See Also

randnc

rands

Symmetric random weight/bias initialization function

Syntax

$\mathrm{W}=\operatorname{rands}(\mathrm{S}, \mathrm{PR})$
$M=\operatorname{rands}(S, R)$
$v=$ rands(S)

Description

rands is a weight/bias initialization function.
$W=$ rands (S, PR) takes

S	Number of neurons
PR	R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between -1 and 1.
$M=$ rands (S,R) returns an S-by-R matrix of random values. $v=$ rands (S) returns an S-by-1 vector of random values.

Examples

Here, three sets of random values are generated with rands.

```
rands(4,[0 1; -2 2])
```

rands (4)
rands $(2,3)$

Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights $\{i, j\}$.initFcn to 'rands'.
4 Set each net.layerWeights $\{i, j\} . i n i t F c n$ to 'rands'.
5 Set each net.biases\{i\}.initFcn to 'rands'.
To initialize the network, call init.

See Also

randsmall | randnr | randnc | initwb | initlay | init

randsmall

Small random weight/bias initialization function

Syntax

$\mathrm{W}=\operatorname{randsmall}(\mathrm{S}, \mathrm{PR})$
$M=\operatorname{rands}(S, R)$
$v=$ rands(S)

Description

randsmall is a weight/bias initialization function.
$\mathrm{W}=$ randsmall $(\mathrm{S}, \mathrm{PR})$ takes

S	Number of neurons
PR	R-by-2 matrix of R input ranges

and returns an S-by-R weight matrix of small random values between -0.1 and 0.1.
$M=$ rands (S, R) returns an S-by-R matrix of random values. $v=$ rands (S) returns an S-by- 1 vector of random values.

Examples

Here three sets of random values are generated with rands.

```
randsmall(4,[0 1; -2 2])
randsmall(4)
randsmall(2,3)
```


Network Use

To prepare the weights and the bias of layer i of a custom network to be initialized with rands,

1 Set net.initFcn to 'initlay'. (net.initParam automatically becomes initlay's default parameters.)
2 Set net.layers\{i\}.initFcn to 'initwb'.
3 Set each net.inputWeights\{i,j\}.initFcn to 'randsmall'.
4 Set each net.layerWeights\{i,j\}.initFcn to 'randsmall'.
5 Set each net.biases\{i\}.initFcn to 'randsmall'.
To initialize the network, call init.

See Also

rands | randnr | randnc | initwb | initlay | init

randtop

Random layer topology function

Syntax

```
pos = randtop(dim1,dim2,...,dimN)
```


Description

randtop calculates the neuron positions for layers whose neurons are arranged in an N dimensional random pattern.

```
pos = randtop(dim1,dim2, ..., dimN) takes N arguments,
```


dimi \quad Length of layer in dimension i

and returns an N -by-S matrix of N coordinate vectors, where S is the product of dim1*dim2*...*dimN.

Examples

This code creates and displays a two-dimensional layer with neurons arranged in a random pattern.

```
pos = randtop(8,5);
net = selforgmap([8 5],'topologyFcn','randtop');
plotsomtop(net)
```

```
See Also
gridtop | hextop | tritop
```


regression

Linear regression

Syntax

```
[r,m,b] = regression(t,y)
[r,m,b] = regression(t,y,'one')
```


Description

[r,m,b] = regression(t, y) takes these arguments,

t	Target matrix or cell array data with a total of N matrix rows
y	Output matrix or cell array data of the same size

and returns these outputs,

r	Regression values for each of the N matrix rows
m	Slope of regression fit for each of the N matrix rows
b	Offset of regression fit for each of the N matrix rows

[r,m,b] = regression(t,y,'one') combines all matrix rows before regressing, returning single scalar regression, slope and offset values.

Examples

Here a feedforward network is trained and regression performed on its targets and outputs.

```
[x,t] = simplefit_dataset;
net = feedforwardñet(20);
net = train(net,x,t);
y = net(x);
[r,m,b] = regression(t,y)
```

plotregression(t,y)

See Also

plotregression | confusion

removeconstantrows

Process matrices by removing rows with constant values

Syntax

[Y,PS] = removeconstantrows(X,max_range)
[Y,PS] = removeconstantrows(X,FP)
Y = removeconstantrows('apply',X,PS)
X = removeconstantrows('reverse', Y,PS)

Description

removeconstantrows processes matrices by removing rows with constant values.
[Y,PS] = removeconstantrows(X,max_range) takes X and an optional parameter,

X	Single N-by-Q matrix or a 1-by-TS row cell array of N-by-Q matrices
max_range	Maximum range of values for row to be removed (default is 0)

and returns

Y	Each M-by-Q matrix with N - M rows deleted (optional)
PS	Process settings that allow consistent processing of values

[Y, PS] = removeconstantrows $(\mathrm{X}, \mathrm{FP})$ takes parameters as a struct:
FP.max_range.
$Y=$ removeconstantrows('apply', X, PS) returns Y, given X and settings PS.
X = removeconstantrows('reverse', $Y, P S$) returns X, given Y and settings PS.

Examples

Here is how to format a matrix so that the rows with constant values are removed.

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,PS] = removeconstantrows(x1)
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
```

$\mathrm{y} 2=$ removeconstantrows('apply', $\mathrm{x} 2, \mathrm{PS}$)

Reverse the processing of y 1 to get x 1 again.
x1_again = removeconstantrows('reverse',y1,PS)

See Also

fixunknowns | mapstd | mapminmax | processpca

removedelay

Remove delay to neural network's response

Syntax

```
net = removedelay(net,n)
```


Description

net $=$ removedelay (net, n) takes these arguments,

net	Neural network
n	Number of delays

and returns the network with input delay connections decreased, and output feedback delays increased, by the specified number of delays n . The result is a network which behaves identically, except that outputs are produced n timesteps later.

If the number of delays n is not specified, a default of one delay is used.

Examples

Here a time delay network is created, trained and simulated in its original form on an input time series X and target series T. It is then with a delay removed and then added back. These first and third outputs will be identical, while the second will be shifted by one timestep.

```
[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,20);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi);
y1 = net(Xs)
net2 = removedelay(net);
[Xs,Xi,Ai,Ts] = preparets(net2,X,T);
y2 = net2(Xs,Xi)
```

```
net3 = adddelay(net2)
[Xs,Xi,Ai,Ts] = preparets(net3,X,T);
y3 = net3(Xs,Xi)
```


See Also

adddelay | closeloop | openloop

removerows

Process matrices by removing rows with specified indices

Syntax

```
[Y,PS] = removerows(X,'ind',ind)
[Y,PS] = removerows(X,FP)
Y = removerows('apply',X,PS)
X = removerows('reverse',Y,PS)
dx_dy = removerows('dx',X,Y,PS)
dx_dy = removerows('dx',X,[],PS)
name = removerows('name')
fp = removerows('pdefaults')
names = removerows('pdesc')
removerows('pcheck',FP)
```


Description

removerows processes matrices by removing rows with the specified indices.
[Y, PS] = removerows(X, 'ind',ind) takes X and an optional parameter,

X	N-by-Q matrix or a 1-by-TS row cell array of N-by-Q matrices
ind	Vector of row indices to remove (default is [])

and returns

Y	Each M-by-Q matrix, where M == N-length(ind) (optional)
PS	Process settings that allow consistent processing of values

[Y, PS] = removerows $(\mathrm{X}, \mathrm{FP})$ takes parameters as a struct: FP. ind.
$Y=$ removerows('apply', X, PS) returns Y, given X and settings $P S$.
X = removerows('reverse', $Y, P S$) returns X, given Y and settings PS.
$d x _d y=$ removerows (' $d x$ ' $\left., X, Y, P S\right)$ returns the $M-b y-N-b y-Q$ derivative of Y with respect to X.
$d x _d y=$ removerows('dx',X,[],PS) returns the derivative, less efficiently.
name $=$ removerows ('name') returns the name of this process method.
$f p=$ removerows('pdefaults') returns the default process parameter structure.
names $=$ removerows('pdesc') returns the process parameter descriptions.
removerows ('pcheck', FP) throws an error if any parameter is illegal.

Examples

Here is how to format a matrix so that rows 2 and 4 are removed:

```
x1 = [1 2 4; 1 1 1; 3 2 2; 0 0 0]
[y1,ps] = removerows(x1,'ind',[2 4])
```

Next, apply the same processing settings to new values.

```
x2 = [5 2 3; 1 1 1; 6 7 3; 0 0 0]
y2 = removerows('apply',x2,ps)
```

Reverse the processing of y 1 to get x 1 again.
x1_again $=$ removerows('reverse', $\mathrm{y} 1, \mathrm{ps})$

More About

Algorithms

In the reverse calculation, the unknown values of replaced rows are represented with NaN values.

See Also
fixunknowns | mapstd | mapminmax | processpca

rever†

Change network weights and biases to previous initialization values

Syntax

```
net = revert (net)
```


Description

net $=$ revert (net) returns neural network net with weight and bias values restored to the values generated the last time the network was initialized.

If the network is altered so that it has different weight and bias connections or different input or layer sizes, then revert cannot set the weights and biases to their previous values and they are set to zeros instead.

Examples

Here a perceptron is created with input size set to 2 and number of neurons to 1 .

```
net = perceptron;
net.inputs{1}.size = 2;
net.layers{1}.size = 1;
```

The initial network has weights and biases with zero values.

```
net.iw{1,1}, net.b{1}
```

Change these values as follows:

```
net.iw{1,1} = [1 2];
net.b{1} = 5;
net.iw{1,1}, net.b{1}
```

You can recover the network's initial values as follows:

```
net = revert(net);
```

```
net.iw{1,1}, net.b{1}
```


See Also

init | sim | adapt | train

rOC

Receiver operating characteristic

Syntax

[tpr,fpr,thresholds] = roc(targets,outputs)

Description

The receiver operating characteristic is a metric used to check the quality of classifiers. For each class of a classifier, roc applies threshold values across the interval [0,1] to outputs. For each threshold, two values are calculated, the True Positive Ratio (the number of outputs greater or equal to the threshold, divided by the number of one targets), and the False Positive Ratio (the number of outputs less than the threshold, divided by the number of zero targets).

You can visualize the results of this function with plotroc.
[tpr,fpr, thresholds] = roc(targets, outputs) takes these arguments:

targets	S-by-Q matrix, where each column vector contains a single 1 value, with all other elements 0 . The index of the 1 indicates which of S categories that vector represents.
outputs	S-by-Q matrix, where each column contains values in the range $[0,1]$. The index of the largest element in the column indicates which of S categories that vector presents. Alternately, 1-by-Q vector, where values greater or equal to 0.5 indicate class membership, and values below 0.5, nonmembership.

and returns these values:

tpr	1-by-S cell array of 1-by-N true-positive/positive ratios.
fpr	1-by-S cell array of 1-by-N false-positive/negative ratios.
thresholds	1 -by-S cell array of 1-by-N thresholds over interval [0,1].

roc (targets, outputs) takes these arguments:

targets	1 -by-Q matrix of Boolean values indicating class membership.
outputs	S-by-Q matrix, of values in $[0,1]$ interval, where values greater than or equal to 0.5 indicate class membership.

and returns these values:

tpr	1 -by- N vector of true-positive/positive ratios.
fpr	1 -by- N vector of false-positive/negative ratios.
thresholds	1 -by- N vector of thresholds over interval $[0,1]$.

Examples

```
load iris_dataset
net = patternnet(20);
net = train(net,irisInputs,irisTargets);
irisOutputs = sim(net,irisInputs);
[tpr,fpr,thresholds] = roc(irisTargets,irisOutputs)
```


See Also

plotroc| confusion

sae

Sum absolute error performance function

Syntax

```
perf = sae(net,t,y,ew)
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,'squaredWeighting',squaredWeighting)
[...] = sae(...,FP)
```


Description

sae is a network performance function. It measures performance according to the sum of squared errors.
perf = sae(net, t,y,ew) takes these input arguments and optional function parameters,

net	Neural network
t	Matrix or cell array of target vectors
y	Matrix or cell array of output vectors
ew	Error weights (default $=\{1\}$)

and returns the sum squared error.
This function has three optional function parameters that can be defined with parameter name/pair arguments, or as a structure FP argument with fields having the parameter name and assigned the parameter values:

```
[...] = sae(...,'regularization',regularization)
[...] = sae(...,'normalization',normalization)
[...] = sae(...,'squaredWeighting',squaredWeighting)
```

[...] $=\operatorname{sae}(\ldots, F P)$

- regularization - can be set to any value between the default of 0 and 1 . The greater the regularization value, the more squared weights and biases are taken into account in the performance calculation.
- normalization - can be set to the default 'absolute', or 'normalized' (which normalizes errors to the [+2 -2] range consistent with normalized output and target ranges of $\left[\begin{array}{cc}-1 & 1\end{array}\right]$) or 'percent' (which normalizes errors to the range $[-1+1]$).
- squaredWeighting - can be set to the default false, for applying error weights to absolute errors, or false for applying error weights to the squared errors before squaring.

Examples

Here a network is trained to fit a simple data set and its performance calculated

```
[x,t] = simplefit_dataset;
net = fitnet(10,'trainscg');
net.performFcn = 'sae';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sae(net,t,y)
```


Nełwork Use

To prepare a custom network to be trained with sae, set net. performFcn to 'sae'. This automatically sets net. performParam to the default function parameters.

Then calling train, adapt or perform will result in sae being used to calculate performance.

satlin

Saturating linear transfer function

Graph and Symbol

$a=\operatorname{satlin}(n)$

Satlin Transfer Function

Syntax

$A=\operatorname{satlin}(N, F P)$

Description

satlin is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{satlin}(N, F P)$ takes one input,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements clipped to [0, 1].
info = satlin('code') returns useful information for each supported code string:
satlin('name') returns the name of this function.
satlin('output', FP) returns the [min max] output range.
satlin('active', FP) returns the [min max] active input range.
satlin('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
satlin('fpnames') returns the names of the function parameters.
satlin('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlin transfer function.

```
n = -5:0.1:5;
a = satlin(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'satlin';
```


More About

Algorithms

```
a = satlin(n) = 0, if n <= 0
n, if 0 <= n <= 1
1, if 1<= n
```

See Also
sim | poslin | satlins | purelin

satlins

Symmetric saturating linear transfer function

Graph and Symbol

$a=\operatorname{satlins}(n)$
Satlins Transfer Function

Syntax

$A=$ satlins(N,FP)

Description

satlins is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=$ satlins ($N, F P$) takes N and an optional argument,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (optional, ignored)

and returns A, the S-by-Q matrix of N's elements clipped to [-1, 1].
info $=$ satlins('code') returns useful information for each supported code string:
satlins('name') returns the name of this function.
satlins('output', FP) returns the [min max] output range.
satlins('active', FP) returns the [min max] active input range.
satlins('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
satlins('fpnames') returns the names of the function parameters.
satlins('fpdefaults') returns the default function parameters.

Examples

Here is the code to create a plot of the satlins transfer function.

```
n = -5:0.1:5;
a = satlins(n);
plot(n,a)
```


More About

Algorithms

```
satlins(n) = -1, if n <= -1
n, if -1 <= n <= 1
1, if 1<= n
```


See Also

sim | satlin | poslin | purelin

scalprod

Scalar product weight function

Syntax

```
Z = scalprod(W,P)
dim = scalprod('size',S,R,FP)
dw = scalprod('dw',W,P,Z,FP)
```


Description

scalprod is the scalar product weight function. Weight functions apply weights to an input to get weighted inputs.
$Z=\operatorname{scalprod}(W, P)$ takes these inputs,

W	1-by-1 weight matrix
P	R-by-Q matrix of Q input (column) vectors

and returns the R-by- Q scalar product of W and P defined by $Z=w * P$.
dim = scalprod('size', S, R,FP) takes the layer dimension S, input dimension R, and function parameters, and returns the weight size [1-by-1].
$\mathrm{dw}=$ scalprod('dw', $\mathrm{W}, \mathrm{P}, \mathrm{Z}, \mathrm{FP}$) returns the derivative of Z with respect to W .

Examples

Here you define a random weight matrix W and input vector P and calculate the corresponding weighted input Z.

```
W = rand(1,1);
P = rand(3,1);
Z = scalprod(W,P)
```


Network Use

To change a network so an input weight uses scalprod, set net.inputWeight\{i,j\}.weightFcn to 'scalprod'.

For a layer weight, set net.layerWeight $\{i, j\}$.weightFen to 'scalprod'.
In either case, call sim to simulate the network with scalprod.
See help newp and help newlin for simulation examples.

```
See Also
dotprod | sim | dist | negdist | normprod
```


selforgmap

Self-organizing map

Syntax

selforgmap(dimensions, coverSteps,initNeighbor,topologyFcn,distanceFcn)

Description

Self-organizing maps learn to cluster data based on similarity, topology, with a preference (but no guarantee) of assigning the same number of instances to each class.

Self-organizing maps are used both to cluster data and to reduce the dimensionality of data. They are inspired by the sensory and motor mappings in the mammal brain, which also appear to automatically organizing information topologically.
selforgmap(dimensions, coverSteps,initNeighbor,topologyFcn, distanceFcn) takes these arguments,

dimensions	Row vector of dimension sizes (default = $\left.\left[\begin{array}{ll}8 & 8\end{array}\right]\right)$
coverSteps	Number of training steps for initial covering of the input space (default = 100)
initNeighbor	Initial neighborhood size (default = 3)
topologyFcn	Layer topology function (default = 'hextop ')
distanceFcn	Neuron distance function (default = 'linkdist ')

and returns a self-organizing map.

Examples

Here a self-organizing map is used to cluster a simple set of data.

```
x = simplecluster_dataset;
net = selforgmap([8 8]);
```

```
net = train(net,x);
view(net)
y = net(x);
classes = vec2ind(y);
```


See Also
lvqnet | competlayer | nctool

separatewb

Separate biases and weight values from weight/bias vector

Syntax

[b,IW,LW] = separatewb(net,wb)

Description

[b,IW, LW] = separatewb(net,wb) takes two arguments,

net	Neural network
wb	Weight/bias vector

and returns

b	Cell array of bias vectors
IW	Cell array of input weight matrices
LW	Cell array of layer weight matrices

Examples

Here a feedforward network is trained to fit some data, then its bias and weight values formed into a vector. The single vector is then redivided into the original biases and weights.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
wb = formwb(net,net.b,net.iw,net.lw)
[b,iw,lw] = separatewb(net,wb)
```

```
See Also
getwb | formwb | setwb
```


seq2con

Convert sequential vectors to concurrent vectors

Syntax

b = seq2con(s)

Description

Neural Network Toolbox software represents batches of vectors with a matrix, and sequences of vectors with multiple columns of a cell array.
seq2con and con2seq allow concurrent vectors to be converted to sequential vectors, and back again.
b = seq2con(s) takes one input,
s
N -by-TS cell array of matrices with M columns
and returns

b	N -by- 1 cell array of matrices with $\mathrm{M} *$ TS columns

Examples

Here three sequential values are converted to concurrent values.

```
p1 = {1 4 2}
p2 = seq2con(p1)
```

Here two sequences of vectors over three time steps are converted to concurrent vectors.

```
p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)
```

See Also
con2seq | concur

setelements

Set neural network data elements

Syntax

```
setelements(x,i,v)
```


Description

setelements (x,i,v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into X

and returns the original data x with the data v stored in the elements indicated by the indices i.

Examples

This code sets elements 1 and 3 of matrix data:

```
x = [1 2; 3 4; 7 4]
v = [10 11; 12 13];
y = setelements(x,[1 3],v)
```

This code sets elements 1 and 3 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21 22; 23 24 25] [26 27 28; 29 30 31]}
y = setelements(x,[1 3],v)
```


See Also

nndata | numelements | getelements | catelements | setsamples | setsignals | settimesteps

setsamples

Set neural network data samples

Syntax

setsamples(x,i,v)

Description

setsamples(x,i,v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
V	Neural network data to store into X

and returns the original data x with the data v stored in the samples indicated by the indices i.

Examples

This code sets samples 1 and 3 of matrix data:

```
x = [1 2 3; 4 7 4]
v = [10 11; 12 13];
y = setsamples(x,[1 3],v)
```

This code sets samples 1 and 3 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20 21; 22 23] [24 25; 26 27]; [28 29] [30 31]}
y = setsamples(x,[1 3],v)
```


See Also

nndata | numsamples | getsamples | catsamples | setelements | setsignals | settimesteps

setsignals

Set neural network data signals

Syntax

```
setsignals(x,i,v)
```


Description

setsignals($\mathrm{x}, \mathrm{i}, \mathrm{v}$) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into x

and returns the original data x with the data v stored in the signals indicated by the indices i.

Examples

This code sets signal 2 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22] [23:25]}
y = setsignals(x,2,v)
```


See Also

nndata | numsignals | getsignals | catsignals | setelements | setsamples | settimesteps

setsiminit

Set neural network Simulink block initial conditions

Syntax

setsiminit(sysName, netName, net, xi, ai, Q)

Description

setsiminit(sysName, netName, net, xi, ai, Q) takes these arguments,

sysName	The name of the Simulink system containing the neural network block
netName	The name of the Simulink neural network block
net	The original neural network
xi	Initial input delay states
ai	Initial layer delay states
Q	Sample number (default is 1)

and sets the Simulink neural network blocks initial conditions as specified.

Examples

Here a NARX network is designed. The NARX network has a standard input and an open loop feedback output to an associated feedback input.

```
[x,t] = simplenarx_dataset;
    net = narxnet(1:2,1:2,20);
    view(net)
    [xs,xi,ai,ts] = preparets(net,x,{},t);
    net = train(net,xs,ts,xi,ai);
    y = net(xs,xi,ai);
```

Now the network is converted to closed loop, and the data is reformatted to simulate the network's closed loop response.

```
net = closeloop(net);
view(net)
[xs,xi,ai,ts] = preparets(net,x,{},t);
y = net(xs,xi,ai);
```

Here the network is converted to a Simulink system with workspace input and output ports. Its delay states are initialized, inputs X1 defined in the workspace, and it is ready to be simulated in Simulink.

```
[sysName,netName] = gensim(net,'InputMode','Workspace',...
    'OutputMode','WorkSpace','SolverMode','Discrete');
setsiminit(sysName,netName,net,xi,ai,1);
x1 = nndata2sim(x,1,1);
```

Finally the initial input and layer delays are obtained from the Simulink model. (They will be identical to the values set with setsiminit.)
[xi,ai] = getsiminit(sysName,netName,net);

See Also

gensim | getsiminit| nndata2sim | sim2nndata

settimesteps

Set neural network data timesteps

Syntax

```
settimesteps(x,i,v)
```


Description

settimesteps(x,i,v) takes these arguments,

x	Neural network matrix or cell array data
i	Indices
v	Neural network data to store into x

and returns the original data x with the data v stored in the timesteps indicated by the indices i.

Examples

This code sets timestep 2 of cell array data:

```
x = {[1:3; 4:6] [7:9; 10:12]; [13:15] [16:18]}
v = {[20:22; 23:25]; [25:27]}
y = settimesteps(x,2,v)
```


See Also

nndata | numtimesteps | gettimesteps | cattimesteps | setelements | setsamples | setsignals

setwb

Set all network weight and bias values with single vector

Syntax

```
net = setwb(net,wb)
```


Description

This function sets a network's weight and biases to a vector of values.
net $=$ setwb (net, wb) takes the following inputs:

net	Neural network
wb	Vector of weight and bias values

Examples

Here you create a network with a two-element input and one layer of three neurons.

```
net = feedforwardnet(3);
net = configure(net,[0;0],0);
```

The network has six weights (3 neurons * 2 input elements) and three biases (3 neurons) for a total of nine weight and bias values. You can set them to random values as follows:

```
net = setwb(net,rand(9,1));
```

You can then view the weight and bias values as follows:

```
net.iw{1,1}
net.b{1}
```


See Also

```
getwb | formwb | separatewb
```


sim

Simulate neural network

Syntax

```
[Y,Xf,Af] = sim(net,X,Xi,Ai,T)
[Y,Xf,Af] = sim(net,{Q TS},Xi,Ai)
[Y,...] = sim(net,...,'useParallel',...)
[Y,...] = sim(net,...,'useGPU',...)
[Y,...] = sim(net,...,'showResources',...)
[Ycomposite,...] = sim(net,Xcomposite,...)
[Ygpu,...] = sim(net,Xgpu,...)
```


To Get Help

Type help network/sim.

Description

sim simulates neural networks.
[Y,Xf,Af] = sim(net, X,Xi,Ai,T) takes

net	Network
X	Network inputs
Xi	Initial input delay conditions (default = zeros)
Ai	Initial layer delay conditions (default = zeros)
T	Network targets (default = zeros)

and returns

Y	Network outputs
Xf	Final input delay conditions

Af	Final layer delay conditions

sim is usually called implicitly by calling the neural network as a function. For instance, these two expressions return the same result:
$y=\operatorname{sim}(n e t, x, x i, a i)$
$y=\operatorname{net}(x, x i, a i)$
Note that arguments Xi, Ai, Xf, and Af are optional and need only be used for networks that have input or layer delays.

The signal arguments can have two formats: cell array or matrix.
The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented:

X	Ni-by-TS cell array	Each element $\mathrm{X}\{\mathrm{i}, \mathrm{ts}\}$ is an Ri-by-Q matrix.
Xi	Ni-by-ID cell array	Each element Xi\{i,k\} is an Ri-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.
T	No-by-TS cell array	Each element $\mathrm{X}\{\mathrm{i}, \mathrm{ts}\}$ is a Ui-by-Q matrix.
Y	No-by-TS cell array	Each element $\mathrm{Y}\{\mathrm{i}, \mathrm{ts}\}$ is a Ui-by-Q matrix.
Xf	Ni-by-ID cell array	Each element $\mathrm{Xf}\{\mathrm{i}, \mathrm{k}\}$ is an Ri-by-Q matrix.
Af	Nl-by-LD cell array	Each element $\mathrm{Af}\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
Nl	$=$	net. numLayers
No	$=$	net. numOutputs
D	$=$	net. numInputDelays

LD	$=$	net. numLayerDelays
TS	$=$	Number of time steps
Q	$=$	Batch size
Ri	$=$	net.inputs $\{i\}$. size
Si	$=$	net.layers $\{i\}$. size
Ui	$=$	net.outputs $\{i\}$. size

The columns of $\mathrm{Xi}, \mathrm{Ai}, \mathrm{Xf}$, and Af are ordered from oldest delay condition to most recent:

$\mathrm{Xi}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time $\mathrm{ts}=\mathrm{k}-\mathrm{ID}$
$\mathrm{Xf}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time ts $=\mathrm{TS}+\mathrm{k}-\mathrm{ID}$
$\mathrm{Ai}\{\mathrm{i}, \mathrm{k}\}$	$=$	Layer output i at time ts $=\mathrm{k}-\mathrm{LD}$
$\operatorname{Af}\{\mathrm{i}, \mathrm{k}\}$	$=$	Layer output i at time ts $=\mathrm{TS}+\mathrm{k}-\mathrm{LD}$

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for networks with only one input and output, but can also be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

X	(sum of Ri)-by-Q matrix
$X i$	(sum of Ri)-by-(ID*Q) matrix
$A i$	(sum of Si)-by-(LD*Q) matrix
T	(sum of Ui)-by-Q matrix
Y	(sum of Ui)-by-Q matrix
$X f$	(sum of Ri)-by-(ID*Q) matrix
Af	(sum of Si)-by-(LD*Q) matrix

[$\mathrm{Y}, \mathrm{Xf}, \mathrm{Af}]=\operatorname{sim}(\mathrm{net},\{\mathrm{Q}$ TS $\}, \mathrm{Xi}, \mathrm{Ai})$ is used for networks that do not have an input, such as Hopfield networks, when cell array notation is used.
$[Y, \ldots]=\operatorname{sim}(n e t, \ldots, ' u s e P a r a l l e l ', \ldots)$,
$[Y, \ldots]=\operatorname{sim}(n e t, \ldots, ' u s e G P U ', \ldots)$ or $[Y, \ldots]=$
sim(net, . . ., 'showResources', . .) (or the network called as a function) accepts optional name/value pair arguments to control how calculations are performed. Two of these options allow training to happen faster or on larger datasets using parallel workers or GPU devices if Parallel Computing Toolbox is available. These are the optional name/ value pairs:

'useParallel ' , 'no'	Calculations occur on normal MATLAB thread. This is the default 'useParallel' setting.
'useParallel' , 'yes'	Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations occur on the normal MATLAB thread.
'useGPU' , 'no '	Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU' , 'yes '	Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel Computing Toolbox for GPU requirements.) If the
current gpuDevice is not supported, calculations remain on the CPU.	
If 'useParallel ' is also 'yes ' and a parallel pool is open, then	
each worker with a unique GPU uses that GPU, other workers run	
calculations on their respective CPU cores.	

[Ycomposite,...] = sim(net,Xcomposite,...) takes Composite data and returns Composite results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.
[Ygpu, ...] = sim(net,Xgpu, ...) takes gpuArray data and returns gpuArray results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.

Examples

In the following examples, the sim function is called implicitly by calling the neural network object (net) as a function.

Simulate Feedforward Networks

This example loads a dataset that maps neighborhood characteristics, x , to median house prices, t. A feedforward network with 10 neurons is created and trained on that data, then simulated.

```
[x,t] = house_dataset;
net = feedforwardnet(10);
net = train(net,x,t);
y = net(x);
```


Simulate NARX Time Series Networks

This example trains an open-loop nonlinear-autoregressive network with external input, to model a levitated magnet system defined by a control current x and the magnet's vertical position response t, then simulates the network. The function preparets prepares the data before training and simulation. It creates the open-loop network's combined inputs xo, which contains both the external input x and previous values of position t. It also prepares the delay states $x i$.

```
[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)
```

This same system can also be simulated in closed-loop form.

```
netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);
```


Simulate in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate and train networks faster and on larger datasets than can fit on one PC. Here training and simulation happens across parallel MATLAB workers.

```
parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X,'useParallel','yes');
```


Simulate on GPUs

Use Composite values to distribute the data manually, and get back the results as a Composite value. If the data is loaded as it is distributed, then while each piece of the dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the workers.

```
Xc = Composite;
for i=1:numel(Xc)
    Xc{i} = X+rand(size(X))*0.1; % Use real data instead of random
end
Yc = net(Xc,'showResources','yes');
```

Networks can be simulated using the current GPU device, if it is supported by Parallel Computing Toolbox.

```
gpuDevice % Check if there is a supported GPU
Y = net(X,'useGPU','yes','showResources','yes');
```

To put the data on a GPU manually, and get the results on the GPU:

```
Xgpu = gpuArray(X);
Ygpu = net(Xgpu,'showResources','yes');
Y = gather(Ygpu);
```

To run in parallel, with workers associated with unique GPUs taking advantage of that hardware, while the rest of the workers use CPUs:

```
Y = net(X,'useParallel','yes','useGPU','yes','showResources','yes');
```

Using only workers with unique GPUs might result in higher speeds, as CPU workers might not keep up.

```
Y = net(X,'useParallel','yes','useGPU','only','showResources','yes');
```


More About

Algorithms

> sim uses these properties to simulate a network net.

```
net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect
```

These properties determine the network's weight and bias values and the number of delays associated with each weight:

```
net.IW{i,j}
net.LW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays
```

These function properties indicate how sim applies weight and bias values to inputs to get each layer's output:
net.inputWeights\{i,j\}.weightFen
net.layerWeights\{i,j\}.weightFcn
net.layers\{i\}.netInputFen
net.layers\{i\}.transferFen

See Also

init | adapt | train | revert

sim2nndata

Convert Simulink time series to neural network data

Syntax

sim2nndata(x)

Description

sim2nndata (x) takes either a column vector of values or a Simulink time series structure and converts it to a neural network data time series.

Examples

Here a random Simulink 20 -step time series is created and converted.

```
simts = rands(20,1);
nnts = sim2nndata(simts)
```

Here a similar time series is defined with a Simulink structure and converted.

```
simts.time = 0:19
simts.signals.values = rands(20,1);
simts.dimensions = 1;
nnts = sim2nndata(simts)
```

See Also
nndata|nndata2sim

softmax

Soft max transfer function

Graph and Symbol

Softmax Transfer Function

Syntax

$A=\operatorname{softmax}(N, F P)$

Description

softmax is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{softmax}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of the softmax competitive function applied to each column of N .
info = softmax('code') returns information about this function. The following codes are defined:
softmax ('name') returns the name of this function.
softmax ('output', FP) returns the [min max] output range.
softmax ('active', FP) returns the [min max] active input range.
softmax ('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
softmax ('fpnames') returns the names of the function parameters.
softmax ('fpdefaults') returns the default function parameters.

Examples

Here you define a net input vector N , calculate the output, and plot both with bar graphs.
$\mathrm{n}=[0 ; 1 ;-0.5 ; 0.5]$;
a $=$ softmax (n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')
Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'softmax';
```


More About

Algorithms

$a=\operatorname{softmax}(n)=\exp (n) / \operatorname{sum}(\exp (n))$

See Also
sim | compet

srchbac

1-D minimization using backtracking

Syntax

[a,gX,perf,retcode,delta,tol] = srchbac (net, X, Pd, Tl, Ai, Q, TS, dX, gX, perf, dperf, delta, TOL, ch_perf)

Description

srchbac is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called backtracking.
[a,gX,perf,retcode,delta,tol] =
srchbac(net, X, Pd,Tl,Ai,Q,TS,dX, gX, perf,dperf,delta, TOL, ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the backstepping algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
low_lim	Lower limit on change in step size
up_lim	Upper limit on change in step size
maxstep	Maximum step length
minstep	Minimum step length
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element P $\{i, j$, ts $\}$ is a Dij-by-Q matrix.
Tl	Nl-by-TS cell array	Each element $P\{i, t s\}$ is a Vi-by-Q matrix.
V	Nl-by-LD cell array	Each element Ai $\{i, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
Nl	$=$	net. numLayers
LD	$=$	net. numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers\{i\}.size
Vi	$=$	net.targets $\{i\}$. size
Dij	$=$	Ri $*$ length(net.inputWeights $\{i, j\}$. delays $)$

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [lllllll}
t = [llllllll
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchbac search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
```

```
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchbac with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchbac,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.

2 Set net.trainParam. searchFcn to 'srchbac'.
The srchbac function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

The backtracking search routine srchbac is best suited to use with the quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and then backtracks until an acceptable reduction in the performance is obtained. On the first step it uses the value of performance at the current point and a step multiplier of 1. It also uses the value of the derivative of performance at the current point to obtain a quadratic approximation to the performance function along the search direction. The minimum of the quadratic approximation becomes a tentative optimum point (under certain conditions) and the performance at this point is tested. If the performance is not sufficiently reduced, a cubic interpolation is obtained and the minimum of the cubic interpolation becomes the new tentative optimum point. This process is continued until a sufficient reduction in the performance is obtained.

The backtracking algorithm is described in Dennis and Schnabel. It is used as the default line search for the quasi-Newton algorithms, although it might not be the best technique for all problems.

More About

Algorithms

srchbac locates the minimum of the performance function in the search direction dX, using the backtracking algorithm described on page 126 and 328 of Dennis and Schnabel's book, noted below.

References

Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ, Prentice-Hall, 1983

See Also

srchcha | srchgol | srchhyb

srchbre

1-D interval location using Brent's method

Syntax

[a,gX,perf,retcode,delta,tol] =
srchbre(net, X, Pd, Tl, Ai, Q, TS, dX, gX, perf, dperf, delta, tol, ch_perf)

Description

srchbre is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called Brent's technique.
[a,gX,perf,retcode,delta,tol] =
srchbre(net, X, Pd,Tl,Ai,Q,TS,dX, gX, perf, dperf,delta, tol, ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the Brent algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
bmax	Largest step size
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Lach element P\{i,j,ts $\}$ is a Dij-by-Q matrix.

Tl	Nl-by-TS cell array	Each element $\mathrm{P}\{\mathrm{i}, \mathrm{ts}\}$ is a Vi-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
N1	$=$	net.numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers $\{i\} . s i z e ~$
Vi	$=$	net.targets\{i\}.size
Dij	$=$	Ri * length(net.inputWeights $\{i, j\}$. delays $)$

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [lllllll}
t = [lllllll
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchbac search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
```

```
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchbre with newff, newcf, or newelm. To prepare a custom network to be trained with traincgf, using the line search function srchbre,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.
2 Set net.trainParam. searchFcn to 'srchbre'.
The srchbre function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Brent's search is a linear search that is a hybrid of the golden section search and a quadratic interpolation. Function comparison methods, like the golden section search, have a first-order rate of convergence, while polynomial interpolation methods have an asymptotic rate that is faster than superlinear. On the other hand, the rate of convergence for the golden section search starts when the algorithm is initialized, whereas the asymptotic behavior for the polynomial interpolation methods can take many iterations to become apparent. Brent's search attempts to combine the best features of both approaches.

For Brent's search, you begin with the same interval of uncertainty used with the golden section search, but some additional points are computed. A quadratic function is then fitted to these points and the minimum of the quadratic function is computed. If this minimum is within the appropriate interval of uncertainty, it is used in the next stage of the search and a new quadratic approximation is performed. If the minimum falls outside the known interval of uncertainty, then a step of the golden section search is performed.

See ["Bren73"] for a complete description of this algorithm. This algorithm has the advantage that it does not require computation of the derivative. The derivative
computation requires a backpropagation through the network, which involves more computation than a forward pass. However, the algorithm can require more performance evaluations than algorithms that use derivative information.

More About

Algorithms

srchbre brackets the minimum of the performance function in the search direction dX, using Brent's algorithm, described on page 46 of Scales (see reference below). It is a hybrid algorithm based on the golden section search and the quadratic approximation.

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also

srchbac | srchcha | srchgol | srchhyb

srchcha

1-D minimization using Charalambous' method

Syntax

```
[a,gX,perf,retcode,delta,tol] =
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
```


Description

srchcha is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique based on Charalambous' method.
[a,gX,perf,retcode,delta,tol] =
srchcha(net, X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) takes
these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search
ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size

Parameters used for the Charalambous algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
gama	Parameter to avoid small reductions in performance, usually set to 0.1
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element $P\{i, j$, ts $\}$ is a Dij-by-Q matrix.
Tl	Nl-by-TS cell array	Each element $P\{i, t s\}$ is a Vi-by-Q matrix.

Ai	Nl-by-LD cell array	Each element Ai $\{i, k\}$ is an Si-by-Q matrix.

where

Ni	$=$	net.numInputs
N1	$=$	net.numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net.inputs $\{i\} . s i z e ~$
Si	$=$	net.layers\{i\}.size
Vi	$=$	net.targets\{i\}.size
Dij	$=$	Ri * length(net.inputWeights $\{i, j\}$. delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [0}
t = [0 0 0 1 1 1];
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchcha search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
```

```
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchcha with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchcha,

> 1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.

2 Set net.trainParam. searchFcn to 'srchcha'.
The srchcha function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

The method of Charalambous, srchcha, was designed to be used in combination with a conjugate gradient algorithm for neural network training. Like srchbre and srchhyb, it is a hybrid search. It uses a cubic interpolation together with a type of sectioning.

See ["Char92"] for a description of Charalambous' search. This routine is used as the default search for most of the conjugate gradient algorithms because it appears to produce excellent results for many different problems. It does require the computation of the derivatives (backpropagation) in addition to the computation of performance, but it overcomes this limitation by locating the minimum with fewer steps. This is not true for all problems, and you might want to experiment with other line searches.

More About

Algorithms

srchcha locates the minimum of the performance function in the search direction dX , using an algorithm based on the method described in Charalambous (see reference below).

References

Charalambous, C., "Conjugate gradient algorithm for efficient training of artificial neural networks," IEEE Proceedings, Vol. 139, No. 3, June, 1992, pp. 301-310.

See Also

srchbac | srchbre \| srchgol | srchhyb

srchgol

1-D minimization using golden section search

Syntax

[a,gX,perf,retcode,delta,tol] =
srchgol(net, X, Pd, Tl, Ai, Q, TS, dX, gX, perf, dperf, delta, tol, ch_perf)

Description

srchgol is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique called the golden section search.
[a,gX,perf,retcode,delta,tol] =
srchgol(net, X, Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol, ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search

ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the golden section algorithm are

alpha	Scale factor that determines sufficient reduction in perf
bmax	Largest step size
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element P $\{i, j$, ts $\}$ is a Dij-by-Q matrix.

Tl	Nl-by-TS cell array	Each element $\mathrm{P}\{\mathrm{i}, \mathrm{ts}\}$ is a Vi-by-Q matrix.
Ai	Nl-by-LD cell array	Each element $\mathrm{Ai}\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.

where

Ni	$=$	net. numInputs
N1	$=$	net.numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net.inputs\{i\}.size
Si	$=$	net.layers $\{i\}$. size
Vi	$=$	net.targets\{i\}.size
Dij	$=$	Ri ${ }^{*}$ length(net.inputWeights $\{i, j\}$. delays $)$

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [0 1 1 2 3 4 5];
t = [llllllll
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchgol search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
```

```
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchgol with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchgol,

> 1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.

2 Set net.trainParam. searchFcn to 'srchgol'.
The srchgol function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

The golden section search srchgol is a linear search that does not require the calculation of the slope. This routine begins by locating an interval in which the minimum of the performance function occurs. This is accomplished by evaluating the performance at a sequence of points, starting at a distance of delta and doubling in distance each step, along the search direction. When the performance increases between two successive iterations, a minimum has been bracketed. The next step is to reduce the size of the interval containing the minimum. Two new points are located within the initial interval. The values of the performance at these two points determine a section of the interval that can be discarded, and a new interior point is placed within the new interval. This procedure is continued until the interval of uncertainty is reduced to a width of tol, which is equal to delta/scale_tol.

See ["HDB96"], starting on page 12-16, for a complete description of the golden section search. Try the Neural Network Design demonstration nnd12sd1 ["HDB96"] for an illustration of the performance of the golden section search in combination with a conjugate gradient algorithm.

More About

Algorithms

srchgol locates the minimum of the performance function in the search direction dX , using the golden section search. It is based on the algorithm as described on page 33 of Scales (see reference below).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchhyb

srchhyb

1-D minimization using a hybrid bisection-cubic search

Syntax

```
[a,gX,perf,retcode,delta,tol] =
srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)
```


Description

srchhyb is a linear search routine. It searches in a given direction to locate the minimum of the performance function in that direction. It uses a technique that is a combination of a bisection and a cubic interpolation.
[a,gX,perf,retcode,delta,tol] =
srchhyb(net, X, Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol, ch_perf) takes these inputs,

net	Neural network
X	Vector containing current values of weights and biases
Pd	Delayed input vectors
Tl	Layer target vectors
Ai	Initial input delay conditions
Q	Batch size
TS	Time steps
dX	Search direction vector
gX	Gradient vector
perf	Performance value at current X
dperf	Slope of performance value at current X in direction of dX
delta	Initial step size
tol	Tolerance on search
ch_perf	Change in performance on previous step

and returns

a	Step size that minimizes performance
gX	Gradient at new minimum point
perf	Performance value at new minimum point
retcode	Return code that has three elements. The first two elements correspond to the number of function evaluations in the two stages of the search. The third element is a return code. These have different meanings for different search algorithms. Some might not be used in this function.
	0 Normal
	1 Minimum step taken
	2 Maximum step taken
delta	3 Beta condition not met
tol	New initial step size, based on the current step size
	New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are

alpha	Scale factor that determines sufficient reduction in perf
beta	Scale factor that determines sufficiently large step size
bmax	Largest step size
scale_tol	Parameter that relates the tolerance tol to the initial step size delta, usually set to 20

The defaults for these parameters are set in the training function that calls them. See traincgf, traincgb, traincgp, trainbfg, and trainoss.

Dimensions for these variables are

Pd	No-by-Ni-by-TS cell array	Each element $P\{i, j, t s\}$ is a Dij-by-Q matrix.
Tl	Nl-by-TS cell array	Each element $P\{i, t s\}$ is a Vi-by-Q matrix.

Ai	Nl-by-LD cell array	Each element Ai $\{i, k\}$ is an Si-by-Q matrix.

where

Ni	$=$	net.numInputs
Nl	$=$	net.numLayers
LD	$=$	net.numLayerDelays
Ri	$=$	net.inputs $\{i\}$. size
Si	$=$	net.layers\{i\}.size
Vi	$=$	net.targets\{i\}.size
Dij	$=$	Ri * length(net.inputWeights\{i,j\}.delays)

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];
```

A two-layer feed-forward network is created. The network's input ranges from [0 to 10]. The first layer has two tansig neurons, and the second layer has one logsig neuron. The traincgf network training function and the srchhyb search function are to be used.

Create and Test a Network

```
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)
```


Train and Retest the Network

```
net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
```

```
a = sim(net,p)
```


Network Use

You can create a standard network that uses srchhyb with newff, newcf, or newelm.
To prepare a custom network to be trained with traincgf, using the line search function srchhyb,

1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.

2 Set net.trainParam. searchFcn to 'srchhyb'.
The srchhyb function can be used with any of the following training functions: traincgf, traincgb, traincgp, trainbfg, trainoss.

Definitions

Like Brent's search, srchhyb is a hybrid algorithm. It is a combination of bisection and cubic interpolation. For the bisection algorithm, one point is located in the interval of uncertainty, and the performance and its derivative are computed. Based on this information, half of the interval of uncertainty is discarded. In the hybrid algorithm, a cubic interpolation of the function is obtained by using the value of the performance and its derivative at the two endpoints. If the minimum of the cubic interpolation falls within the known interval of uncertainty, then it is used to reduce the interval of uncertainty. Otherwise, a step of the bisection algorithm is used.

See ["Scal85"] for a complete description of the hybrid bisection-cubic search. This algorithm does require derivative information, so it performs more computations at each step of the algorithm than the golden section search or Brent's algorithm.

More About

Algorithms

srchhyb locates the minimum of the performance function in the search direction $d X$, using the hybrid bisection-cubic interpolation algorithm described on page 50 of Scales (see reference below).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York Springer-Verlag, 1985

See Also
srchbac | srchbre | srchcha | srchgol

sse

Sum squared error performance function

Syntax

```
perf = sse(net,t,y,ew)
[...] = sse(...,'regularization',regularization)
[...] = sse(....,'normalization',normalization)
[...] = sse(...,'squaredWeighting',squaredWeighting)
[...] = sse(...,FP)
```


Description

sse is a network performance function. It measures performance according to the sum of squared errors.
perf $=\operatorname{sse}($ net, $t, y, e w)$ takes these input arguments and optional function parameters,

net	Neural network
t	Matrix or cell array of target vectors
y	Matrix or cell array of output vectors
ew	Error weights (default $=\{1\}$)

and returns the sum squared error.
This function has three optional function parameters which can be defined with parameter name/pair arguments, or as a structure FP argument with fields having the parameter name and assigned the parameter values.

```
[...] = sse(...,'regularization',regularization)
[...] = sse(...,'normalization',normalization)
[...] = sse(...,'squaredWeighting',squaredWeighting)
```

[...] = sse(...,FP)

- regularization - can be set to any value between the default of 0 and 1 . The greater the regularization value, the more squared weights and biases are taken into account in the performance calculation.
- normalization - can be set to the default 'absolute', or 'normalized ' (which normalizes errors to the [+2 -2] range consistent with normalized output and target ranges of $\left[\begin{array}{ll}-1 & 1\end{array}\right]$) or 'percent ' (which normalizes errors to the range $\left[\begin{array}{ll}-1 & +1\end{array}\right]$).
- squaredWeighting - can be set to the default true, for applying error weights to squared errors; or false for applying error weights to the absolute errors before squaring.

Examples

Here a network is trained to fit a simple data set and its performance calculated

```
[x,t] = simplefit_dataset;
net = fitnet(10);
net.performFcn = 'sse';
net = train(net,x,t)
y = net(x)
e = t-y
perf = sse(net,t,y)
```


Network Use

To prepare a custom network to be trained with sse, set net. performFen to 'sse'. This automatically sets net. performParam to the default function parameters.

Then calling train, adapt or perform will result in sse being used to calculate performance.

staticderiv

Static derivative function

Syntax

staticderiv('dperf_dwb', net, X, T, Xi, Ai, EW)
staticderiv('de_dwb', net, X, T, Xi, Ai, EW)

Description

This function calculates derivatives using the chain rule from the networks performance or outputs back to its inputs. For time series data and dynamic networks this function ignores the delay connections resulting in a approximation (which may be good or not) of the actual derivative. This function is used by Elman networks (elmannet) which is a dynamic network trained by the static derivative approximation when full derivative calculations are not available. As full derivatives are calculated by all the other derivative functions, this function is not recommended for dynamic networks except for research into training algorithms.
staticderiv('dperf_dwb', net, X, T, Xi, Ai, EW) takes these arguments,

net	Neural network
X	Inputs, an RxQ matrix (or NxTS cell array of RixQ matrices)
T	Targets, an SxQ matrix (or MxTS cell array of SixQ matrices)
Xi	Initial input delay states (optional)
Ai	Initial layer delay states (optional)
EW	Error weights (optional)

and returns the gradient of performance with respect to the network's weights and biases, where R and S are the number of input and output elements and Q is the number of samples (and N and M are the number of input and output signals, Ri and Si are the number of each input and outputs elements, and TS is the number of timesteps).
staticderiv('de_dwb', net, X, T,Xi,Ai, EW) returns the Jacobian of errors with respect to the network's weights and biases.

Examples

Here a feedforward network is trained and both the gradient and Jacobian are calculated.

```
[x,t] = simplefit_dataset;
net = feedforwardnet(20);
net = train(net,x,t);
y = net(x);
perf = perform(net,t,y);
gwb = staticderiv('dperf_dwb',net,x,t)
jwb = staticderiv('de_dwb',net,x,t)
```

See Also
bttderiv | defaultderiv | fpderiv | num2deriv

sumabs

Sum of absolute elements of matrix or matrices

Syntax

```
[s,n] = sumabs(x)
```


Description

$[s, n]=$ sumabs (x) takes a matrix or cell array of matrices and returns,

s	Sum of all absolute finite values
n	Number of finite values

If x contains no finite values, the sum returned is 0 .

Examples

m = sumabs([1 2;3 4])
[m,n] = sumabs(\{[1 2; NaN 4], [4 5; 2 3]\})

See Also
meanabs | meansqr | sumsqr

sumsqr

Sum of squared elements of matrix or matrices

Syntax

```
[s,n] = sumsqr(x)
```


Description

$[s, n]=\operatorname{sumsqr}(x)$ takes a matrix or cell array of matrices and returns,

s	Sum of all squared finite values
n	Number of finite values

If x contains no finite values, the sum returned is 0 .

Examples

```
m = sumsqr([1 2;3 4])
[m,n] = sumsqr({[1 2; NaN 4], [4 5; 2 3]})
```

See Also
meanabs | meansqr | sumabs

tansig

Hyperbolic tangent sigmoid transfer function

Graph and Symbol

$a=$ tansig(n)
Tan-Sigmoid Transfer Function

Syntax

A = tansig(N,FP)

Description

tansig is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{tansig}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, the S-by-Q matrix of N's elements squashed into [$\left.\begin{array}{cc}-1 & 1\end{array}\right]$.

Examples

Here is the code to create a plot of the tansig transfer function.

```
n = -5:0.1:5;
a = tansig(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'tansig';
```


More About

Algorithms

```
a = tansig(n) = 2/(1+exp(-2*n))-1
```

This is mathematically equivalent to $\tanh (N)$. It differs in that it runs faster than the MATLAB implementation of tanh, but the results can have very small numerical differences. This function is a good tradeoff for neural networks, where speed is important and the exact shape of the transfer function is not.

References

Vogl, T.P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, "Accelerating the convergence of the backpropagation method," Biological Cybernetics, Vol. 59, 1988, pp. 257-263

See Also
sim | logsig

tapdelay

Shift neural network time series data for tap delay

Syntax

```
tapdelay(x,i,ts,delays)
```


Description

tapdelay (x, i, ts, delays) takes these arguments,

X	Neural network time series data
i	Signal index
ts	Timestep index
delays	Row vector of increasing zero or positive delays

and returns the tap delay values of signal i at timestep ts given the specified tap delays.

Examples

Here a random signal x consisting of eight timesteps is defined, and a tap delay with delays of $\left[\begin{array}{lll}0 & 1 & 4\end{array}\right]$ is simulated at timestep 6 .

```
x = num2cell(rand(1,8));
y = tapdelay(x,1,6,[\begin{array}{lll}{0}&{1}&{4}\end{array}])
```

```
See Also
nndata | extendts | preparets
```


timedelaynet

Time delay neural network

Syntax

timedelaynet(inputDelays,hiddenSizes,trainFcn)

Description

Time delay networks are similar to feedforward networks, except that the input weight has a tap delay line associated with it. This allows the network to have a finite dynamic response to time series input data. This network is also similar to the distributed delay neural network (distdelaynet), which has delays on the layer weights in addition to the input weight.
timedelaynet(inputDelays, hiddenSizes, trainFcn) takes these arguments,

inputDelays	Row vector of increasing 0 or positive delays $($ default = 1:2)
hiddenSizes	Row vector of one or more hidden layer sizes $($ default = 10)
trainFcn	Training function (default = 'trainlm ' $)$

and returns a time delay neural network.

Examples

Here a time delay neural network is used to solve a simple time series problem.

```
[X,T] = simpleseries_dataset;
net = timedelaynet(1:2,10);
[Xs,Xi,Ai,Ts] = preparets(net,X,T);
net = train(net,Xs,Ts,Xi,Ai);
view(net)
Y = net(Xs,Xi,Ai);
perf = perform(net,Ts,Y)
```


See Also

preparets | removedelay | distdelaynet | narnet | narxnet

tonndata

Convert data to standard neural network cell array form

Syntax

[y,wasMatrix] = tonndata(x, columnSamples,cellTime)

Description

[y, wasMatrix] = tonndata(x, columnSamples, cellTime) takes these arguments,

x	Matrix or cell array of matrices
columnSamples	True if original samples are oriented as columns, false if rows
cellTime	True if original samples are columns of a cell array, false if they are stored in a matrix

and returns

y	Original data transformed into standard neural network cell array form
wasMatrix	True if original data was a matrix (as apposed to cell array)

If columnSamples is false, then matrix x or matrices in cell array x will be transposed, so row samples will now be stored as column vectors.

If cellTime is false, then matrix samples will be separated into columns of a cell array so time originally represented as vectors in a matrix will now be represented as columns of a cell array.

The returned value wasMatrix can be used by fromnndata to reverse the transformation.

Examples

Here data consisting of six timesteps of 5-element vectors, originally represented as a matrix with six columns, is converted to standard neural network representation and back.

```
x = rands(5,6)
columnSamples = true; % samples are by columns.
cellTime = false; % time-steps in matrix, not cell array.
[y,wasMatrix] = tonndata(x,columnSamples,cellTime)
x2 = fromnndata(y,wasMatrix,columnSamples,cellTime)
```


See Also

nndata | fromnndata | nndata2sim | sim2nndata

train

Train neural network

Syntax

```
[net,tr] = train(net,X,T,Xi,Ai,EW)
[net,___] = train(___,'useParallel',
[net,___] = train(___,'useGPU',___)
[net, ___] = train( ___,'showResources',
```

\qquad

```
[net, ___] = train(Xcomposite,Tcomposite, ___)
[net,___] = train(Xgpu,Tgpu,___)
net = train(___,'CheckpointFile','path/
name','CheckpointDelay', numDelays)
```


To Get Help

Type help network/train.

Description

train trains a network net according to net.trainFcn and net.trainParam.
[net, tr] $=$ train(net, $\mathrm{X}, \mathrm{T}, \mathrm{Xi}, \mathrm{Ai}, \mathrm{EW})$ takes

net	Network
X	Network inputs
T	Network targets (default = zeros)
Xi	Initial input delay conditions (default = zeros)
Ai	Initial layer delay conditions (default = zeros)
EW	Error weights

and returns

net	New network
tr	Training record (epoch and perf)

Note that T is optional and need only be used for networks that require targets. Xi is also optional and need only be used for networks that have input or layer delays.
train's signal arguments can have two formats: cell array or matrix.
The cell array format is easiest to describe. It is most convenient for networks with multiple inputs and outputs, and allows sequences of inputs to be presented.

X	Ni-by-TS cell array	Each element $\mathrm{X}\{\mathrm{i}, \mathrm{j}, \mathrm{ts}\}$ is an Ni-by-Q matrix.
T	Nl-by-TS cell array	Each element T\{i, ts $\}$ is a Ui-by-Q matrix.
Xi	Ni-by-ID cell array	Each element Xi $\{\mathrm{i}, \mathrm{k}\}$ is an Ri-by-Q matrix.
Ai	Nl-by-LD cell array	Each element Ai $\{\mathrm{i}, \mathrm{k}\}$ is an Si-by-Q matrix.
EW	Nl-by-TS cell array	Each element T\{i,ts $\}$ is a Ui-by-Q

where

Ni	$=$	net. numInputs
N1	$=$	net. numLayers
ID	$=$	net.numInputDelays
LD	$=$	net.numLayerDelays
TS	$=$	Number of time steps
Q	$=$	Batch size
Ri	$=$	net.inputs $\{$ i\}.size
Si	$=$	net.layers\{i\}.size

The columns of Xi and Ai are ordered from the oldest delay condition to the most recent:

$\mathrm{Xi}\{\mathrm{i}, \mathrm{k}\}$	$=$	Input i at time $\mathrm{ts}=\mathrm{k}-\mathrm{ID}$

Ai $\{\mathbf{i}, \mathrm{k}\}$	$=$	Layer output i at time $t s=k-\operatorname{LD}$

The error weights EW can also have a size of 1 in place of all or any of N1, TS, Ui or Q. In that case, EW is automatically dimension extended to match the targets T. This allows for conveniently weighting the importance in any dimension (such as per sample) while having equal importance across another (such as time, with TS=1). If all dimensions are 1 , for instance if EW $=\{1\}$, then all target values are treated with the same importance. That is the default value of EW.

The matrix format can be used if only one time step is to be simulated (TS = 1). It is convenient for networks with only one input and output, but can be used with networks that have more.

Each matrix argument is found by storing the elements of the corresponding cell array argument in a single matrix:

X	(sum of Ri)-by-Q matrix
T	(sum of Ui)-by-Q matrix
$X i$	(sum of Ri)-by-(ID*Q) matrix
Ai	(sum of Si)-by-(LD*Q) matrix
EW	(sum of Ui)-by-Q matrix

As noted above, the error weights EW can be of the same dimensions as the targets T, or have some dimensions set to 1 . For instance if EW is 1 -by-Q, then target samples will have different importances, but each element in a sample will have the same importance. If EW is (sum of Ui)-by-Q, then each output element has a different importance, with all samples treated with the same importance.

The training record TR is a structure whose fields depend on the network training function (net.NET.trainFcn). It can include fields such as:

- Training, data division, and performance functions and parameters
- Data division indices for training, validation and test sets
- Data division masks for training validation and test sets
- Number of epochs (num_epochs) and the best epoch (best_epoch).
- A list of training state names (states).
- Fields for each state name recording its value throughout training
- Performances of the best network (best_perf, best_vperf, best_tperf)
[net, ___] = train(__ , 'useParallel', __),
[net,___] = train(___, 'useGPU',__), or [net,___] train (__ , 'showResources', ___) accepts optional name/value pair arguments to control how calculations are performed. Two of these options allow training to happen faster or on larger datasets using parallel workers or GPU devices if Parallel Computing Toolbox is available. These are the optional name/value pairs:

'useParallel' , 'no'	Calculations occur on normal MATLAB thread. This is the default 'useParallel' setting.
'useParallel' , 'yes'	Calculations occur on parallel workers if a parallel pool is open. Otherwise calculations occur on the normal MATLAB thread.
'useGPU ' , 'no '	Calculations occur on the CPU. This is the default 'useGPU' setting.
'useGPU ' , 'yes '	Calculations occur on the current gpuDevice if it is a supported GPU (See Parallel Computing Toolbox for GPU requirements.) If the current gpuDevice is not supported, calculations remain on the CPU. If ' useParallel' is also 'yes' and a parallel pool is open, then each worker with a unique GPU uses that GPU, other workers run calculations on their respective CPU cores.
'useGPU' , 'only '	If no parallel pool is open, then this setting is the same as 'yes '. If a parallel pool is open then only workers with unique GPUs are used. However, if a parallel pool is open, but no supported GPUs are available, then calculations revert to performing on all worker CPUs.
'showResources ' , 'no'	Do not display computing resources used at the command line. This is the default setting.
'showResources ' , 'yes '	Show at the command line a summary of the computing resources actually used. The actual resources may differ from the requested resources, if parallel or GPU computing is requested but a parallel pool is not open or a supported GPU is not available. When parallel workers are used, each worker's computation mode is described,
including workers in the pool that are not used.	

[net,___] = train(Xcomposite, Tcomposite, ___) takes Composite data and returns Composite results. If Composite data is used, then 'useParallel' is automatically set to 'yes'.
[net, ___] = train(Xgpu, Tgpu, ___) takes gpuArray data and returns gpuArray results. If gpuArray data is used, then 'useGPU' is automatically set to 'yes'.
net $=$ train(__ , 'CheckpointFile', 'path/
name', 'CheckpointDelay', numDelays) periodically saves intermediate values of the neural network and training record during training to the specified file. This protects training results from power failures, computer lock ups, Ctrl+C, or any other event that halts the training process before train returns normally.

The value for 'CheckpointFile' can be set to a filename to save in the current working folder, to a file path in another folder, or to an empty string to disable checkpoint saves (the default value).

The optional parameter 'CheckpointDelay ' limits how often saves happen. Limiting the frequency of checkpoints can improve efficiency by keeping the amount of time saving checkpoints low compared to the time spent in calculations. It has a default value of 60 , which means that checkpoint saves do not happen more than once per minute. Set the value of 'CheckpointDelay ' to 0 if you want checkpoint saves to occur only once every epoch.

Examples

Train and Plot Networks

Here input x and targets t define a simple function that you can plot:

```
x = [llllllllll
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(x,t,'o')
```

Here feedforwardnet creates a two-layer feed-forward network. The network has one hidden layer with ten neurons.

```
net = feedforwardnet(10);
net = configure(net,x,t);
y1 = net(x)
```

```
plot(x,t, 'o', x,y1,'x')
```

The network is trained and then resimulated.

```
net = train(net,x,t);
y2 = net(x)
plot(x,t,'o',x,y1,'x',x,y2,'*')
```


Train NARX Time Series Network

This example trains an open-loop nonlinear-autoregressive network with external input, to model a levitated magnet system defined by a control current x and the magnet's vertical position response t, then simulates the network. The function preparets prepares the data before training and simulation. It creates the open-loop network's combined inputs xo, which contains both the external input x and previous values of position t. It also prepares the delay states $x i$.

```
[x,t] = maglev_dataset;
net = narxnet(10);
[xo,xi,~,to] = preparets(net,x,{},t);
net = train(net,xo,to,xi);
y = net(xo,xi)
```

This same system can also be simulated in closed-loop form.

```
netc = closeloop(net);
view(netc)
[xc,xi,ai,tc] = preparets(netc,x,{},t);
yc = netc(xc,xi,ai);
```


Train a Network in Parallel on a Parallel Pool

Parallel Computing Toolbox allows Neural Network Toolbox to simulate and train networks faster and on larger datasets than can fit on one PC. Parallel training is currently supported for backpropagation training only, not for self-organizing maps.

Here training and simulation happens across parallel MATLAB workers.

```
parpool
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useParallel','yes','showResources','yes');
Y = net(X);
```

Use Composite values to distribute the data manually, and get back the results as a Composite value. If the data is loaded as it is distributed then while each piece of the dataset must fit in RAM, the entire dataset is limited only by the total RAM of all the workers.

```
[X,T] = vinyl_dataset;
Q = size(X,2);
Xc = Composite;
Tc = Composite;
numWorkers = numel(Xc);
ind = [0 ceil((1:4)*(Q/4))];
for i=1:numWorkers
    indi = (ind(i)+1):ind(i+1);
    Xc{i} = X(:,indi);
    Tc{i} = T(:,indi);
end
net = feedforwardnet;
net = configure(net,X,T);
net = train(net,Xc,Tc);
Yc = net(Xc);
```

Note in the example above the function configure was used to set the dimensions and processing settings of the network's inputs. This normally happens automatically when train is called, but when providing composite data this step must be done manually with non-Composite data.

Train a Network on GPUs

Networks can be trained using the current GPU device, if it is supported by Parallel Computing Toolbox. GPU training is currently supported for backpropagation training only, not for self-organizing maps.

```
[X,T] = vinyl_dataset;
net = feedforwardnet(10);
net = train(net,X,T,'useGPU','yes');
y = net(X);
```

To put the data on a GPU manually:

```
[X,T] = vinyl_dataset;
Xgpu = gpuArray(X);
Tgpu = gpuArray(T);
net = configure(net,X,T);
```

```
net = train(net,Xgpu,Tgpu);
Ygpu = net(Xgpu);
Y = gather(Ygpu);
```

Note in the example above the function configure was used to set the dimensions and processing settings of the network's inputs. This normally happens automatically when train is called, but when providing gpuArray data this step must be done manually with non-gpuArray data.

To run in parallel, with workers each assigned to a different unique GPU, with extra workers running on CPU:

```
net = train(net,X,T,'useParallel','yes','useGPU','yes');
y = net(X);
```

Using only workers with unique GPUs might result in higher speed, as CPU workers might not keep up.

```
net = train(net,X,T,'useParallel','yes','useGPU','only');
Y = net(X);
```


Train Network Using Checkpoint Saves

Here a network is trained with checkpoints saved at a rate no greater than once every two minutes.

```
[x,t] = vinyl_dataset;
net = fitnet([[60 30]);
net = train(net,x,t,'CheckpointFile','MyCheckpoint','CheckpointDelay',120);
```

After a computer failure, the latest network can be recovered and used to continue training from the point of failure. The checkpoint file includes a structure variable checkpoint, which includes the network, training record, filename, time, and number.

```
[x,t] = vinyl_dataset;
load MyCheckpoint
net = checkpoint.net;
net = train(net,x,t,'CheckpointFile','MyCheckpoint');
```

Another use for the checkpoint feature is when you stop a parallel training session (started with the 'UseParallel' parameter) even though the Neural Network Training Tool is not available during parallel training. In this case, set a 'CheckpointFile', use Ctrl+C to stop training any time, then load your checkpoint file to get the network and training record.

More About

Algorithms

train calls the function indicated by net. trainFcn, using the training parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input vectors to the network. The network is then updated according to the results of all those presentations.

Training occurs until a maximum number of epochs occurs, the performance goal is met, or any other stopping condition of the function net.trainFcn occurs.

Some training functions depart from this norm by presenting only one input vector (or sequence) each epoch. An input vector (or sequence) is chosen randomly for each epoch from concurrent input vectors (or sequences). competlayer returns networks that use trainru, a training function that does this.

See Also
init | revert | sim | adapt

trainb

Batch training with weight and bias learning rules

Syntax

net.trainFcn = 'trainb'
[net,tr] = train(net,...)

Description

trainb is not called directly. Instead it is called by train for networks whose net.trainFcn property is set to 'trainb', thus:
net.trainFcn = 'trainb' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with trainb.
trainb trains a network with weight and bias learning rules with batch updates. The weights and biases are updated at the end of an entire pass through the input data.

Training occurs according to trainb's training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 e-6$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLinfalse	Generate command-line output	
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trainb by calling linearlayer.
To prepare a custom network to be trained with trainb,
1 Set net.trainFcn to 'trainb'. This sets net.trainParam to trainb's default parameters.
2 Set each net.inputWeights\{i,j\}.learnFcn to a learning function. Set each net. layerWeights $\{i, j\}$. learnFcn to a learning function. Set each net. biases $\{\mathrm{i}\}$. learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

More About

Algorithms

Each weight and bias is updated according to its learning function after each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

linearlayer | train

trainbfg

BFGS quasi-Newton backpropagation

Syntax

```
net.trainFcn = 'trainbfg'
[net,tr] = train(net,...)
```


Description

trainbfg is a network training function that updates weight and bias values according to the BFGS quasi-Newton method.
net.trainFcn = 'trainbfg' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trainbfg.
Training occurs according to trainbfg training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.showWindow	0	Show training window
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-6$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchbac '	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.

net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 \mathrm{e}-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size
net.trainParam.batch_frag	0	In case of multiple batches, they are considered independent. Any nonzero value implies a fragmented batch, so the final layer's conditions of a previous trained epoch are used as initial conditions for the next epoch.

Network Use

You can create a standard network that uses trainbfg with feedfowardnet or cascadeforwardnet. To prepare a custom network to be trained with trainbfg:

1 Set NET.trainFen to 'trainbfg'. This sets NET.trainParam to trainbfg's default parameters.

2 Set NET.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainbfg.

Examples

Here a neural network is trained to predict median house prices.

```
[x,t] = house_dataset;
net = feedforwardnet(10,'trainbfg');
net = train(net,x,t);
y = net(x)
```


Definitions

Newton's method is an alternative to the conjugate gradient methods for fast optimization. The basic step of Newton's method is

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\mathbf{A}_{k}^{-1} \mathbf{g}_{k}
$$

where \mathbf{A}_{k}^{-1} is the Hessian matrix (second derivatives) of the performance index at the current values of the weights and biases. Newton's method often converges faster than conjugate gradient methods. Unfortunately, it is complex and expensive to compute the Hessian matrix for feedforward neural networks. There is a class of algorithms that is based on Newton's method, but which does not require calculation of second derivatives. These are called quasi-Newton (or secant) methods. They update an approximate Hessian matrix at each iteration of the algorithm. The update is computed as a function of the gradient. The quasi-Newton method that has been most successful in published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update. This algorithm is implemented in the trainbfg routine.

The BFGS algorithm is described in ["DeSc83"]. This algorithm requires more computation in each iteration and more storage than the conjugate gradient methods, although it generally converges in fewer iterations. The approximate Hessian must be stored, and its dimension is $n \times n$, where n is equal to the number of weights and biases in the network. For very large networks it might be better to use Rprop or one of the conjugate gradient algorithms. For smaller networks, however, trainbfg can be an efficient training function.

More About

Algorithms

trainbfg can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
X = X + a*dX;
```

where dX is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed according to the following formula:

$$
d X=-H \backslash g X ;
$$

where gX is the gradient and H is a approximate Hessian matrix. See page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Gill, Murray, \& Wright, Practical Optimization, 1981

See Also

cascadeforwardnet | traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb | trainscg | traincgp | trainoss | feedforwardnet

trainbfgc

BFGS quasi-Newton backpropagation for use with NN model reference adaptive controller

Syntax

[net, TR, Y, E, Pf, Af,flag_stop] = trainbfgc(net, P, T, Pi, Ai, epochs, TS, Q) info $=$ trainbfgc (code)

Description

trainbfgc is a network training function that updates weight and bias values according to the BFGS quasi-Newton method. This function is called from nnmodref, a GUI for the model reference adaptive control Simulink block.
[net, TR, Y, E, Pf, Af, flag_stop] = trainbfgc (net, $P, T, P i, A i, e p o c h s, T S, Q)$ takes these inputs,

net	Neural network
P	Delayed input vectors
T	Layer target vectors
Pi	Initial input delay conditions
Ai	Initial layer delay conditions
epochs	Number of iterations for training
TS	Time steps
Q	Batch size

and returns

net	Trained network
TR	Training record of various values over each epoch:
	TR.epoch Epoch number

	TR.perf Training performance
	TR.vperf Validation performance
Y	TR.tperf Test performance
E	Network output for last epoch
Pf	Layer errors for last epoch
Af	Final input delay conditions
flag_stop	Collective layer outputs for last epoch

Training occurs according to trainbfgc's training parameters, shown here with their default values:

net.trainParam.epochs	100	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-6$	Minimum performance gradient
net.trainParam.max_fail	5	Maximum validation failures
net.trainParam.searchFcn	'srchbacx	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size

net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 \mathrm{e}-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

info = trainbfgc(code) returns useful information for each code string:

'pnames '	Names of training parameters
'pdefaults'	Default training parameters

More About

Algorithms

trainbfgc can train any network as long as its weight, net input, and transfer functions have derivative functions. Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:
$X=X+a * d X ;$
where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed according to the following formula:

$$
d X=-H \backslash g X ;
$$

where gX is the gradient and H is an approximate Hessian matrix. See page 119 of Gill, Murray, and Wright (Practical Optimization, 1981) for a more detailed discussion of the BFGS quasi-Newton method.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Precision problems have occurred in the matrix inversion.

References

Gill, Murray, and Wright, Practical Optimization, 1981

trainbr

Bayesian regulation backpropagation

Syntax

```
net.trainFcn = 'trainbr'
[net,tr] = train(net,...)
```


Description

trainbr is a network training function that updates the weight and bias values according to Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights, and then determines the correct combination so as to produce a network that generalizes well. The process is called Bayesian regularization.
net.trainFcn = 'trainbr' sets the network trainFcn property.
[net, tr] = train(net,...) trains the network with trainbr.
Training occurs according to trainbr training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.mu	0.005	Marquardt adjustment parameter
net.trainParam.mu_dec	0.1	Decrease factor for mu
net.trainParam.mu_inc	10	Increase factor for mu
net.trainParam.mu_max	1 e 10	Maximum value for mu
net.trainParam.max_fail	0	Maximum validation failures
net.trainParam.mem_reduc	1	Factor to use for memory/speed tradeoff
net.trainParam.min_grad	$1 \mathrm{e}-7$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)

net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Validation stops are disabled by default (max_fail $=0$) so that training can continue until an optimal combination of errors and weights is found. However, some weight/bias minimization can still be achieved with shorter training times if validation is enabled by setting max_fail to 6 or some other strictly positive value.

Network Use

You can create a standard network that uses trainbr with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainbr,

1 Set NET.trainFcn to 'trainbr'. This sets NET.trainParam to trainbr's default parameters.
2 Set NET.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainbr. See feedforwardnet and cascadeforwardnet for examples.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network. It involves fitting a noisy sine wave.

```
p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));
```

A feed-forward network is created with a hidden layer of 2 neurons.

```
net = feedforwardnet(2,'trainbr');
```

Here the network is trained and tested.

```
net = train(net,p,t);
a = net(p)
```


Limitations

This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of squared errors. Therefore networks trained with this function must use either the mse or sse performance function.

More About

Algorithms

trainbr can train any network as long as its weight, net input, and transfer functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and weights. It also modifies the linear combination so that at the end of training the resulting network has good generalization qualities. See MacKay (Neural Computation, Vol. 4, No. 3, 1992, pp. 415 to 447) and Foresee and Hagan (Proceedings of the International Joint Conference on Neural Networks, June, 1997) for more detailed discussions of Bayesian regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt algorithm. Backpropagation is used to calculate the Jacobian jX of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to LevenbergMarquardt,

```
jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je
```

where E is all errors and I is the identity matrix.
The adaptive value mu is increased by mu_inc until the change shown above results in a reduced performance value. The change is then made to the network, and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate the Jacobian jX . If mem_reduc is 1 , then trainlm runs the fastest, but can require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory required by a factor of two, but slows trainlm somewhat. Higher values continue to decrease the amount of memory needed and increase the training times.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- mu exceeds mu_max.

References

MacKay, Neural Computation, Vol. 4, No. 3, 1992, pp. 415-447
Foresee and Hagan, Proceedings of the International Joint Conference on Neural Networks, June, 1997

```
See Also
cascadeforwardnet | traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb | trainscg | traincgp | trainbfg | feedforwardnet
```


trainbu

Batch unsupervised weight/bias training

Syntax

```
net.trainFcn = 'trainbu'
[net,tr] = train(net,...)
```


Description

trainbu trains a network with weight and bias learning rules with batch updates. Weights and biases updates occur at the end of an entire pass through the input data.
trainbu is not called directly. Instead the train function calls it for networks whose NET.trainFcn property is set to 'trainbu', thus:
net.trainFcn = 'trainbu' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with trainbu.
Training occurs according to trainbu training parameters, shown here with the following default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showGUI	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Validation and test vectors have no impact on training for this function, but act as independent measures of network generalization.

Network Use

You can create a standard network that uses trainbu by calling selforgmap. To prepare a custom network to be trained with trainbu:

1 Set NET. trainFcn to 'trainbu'. (This option sets NET. trainParam to trainbu default parameters.)
2 Set each NET. inputWeights $\{i, j\}$. learnFcn to a learning function.
3 Set each NET. layerWeights $\{i, j\}$. learnFcn to a learning function.
4 Set each NET. biases $\{\mathrm{i}\}$. learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network:
1 Set NET.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.
See selforgmap for training examples.

More About

Algorithms

Each weight and bias updates according to its learning function after each epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also

train | trainb

trainc

Cyclical order weight/bias training

Syntax

```
net.trainFcn = 'trainc'
[net,tr] = train(net,...)
```


Description

trainc is not called directly. Instead it is called by train for networks whose net.trainFen property is set to 'trainc', thus:
net.trainFcn = 'trainc' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with trainc.
trainc trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in cyclic order.

Training occurs according to trainc training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	5	Maximum validation failures
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	false	Generate command-line output
net.trainParam.showWindow	true	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trainc by calling competlayer. To prepare a custom network to be trained with trainc,

1 Set net.trainFcn to 'trainc'. This sets net.trainParam to trainc's default parameters.
2 Set each net.inputWeights $\{i, j\}$.learnFcn to a learning function. Set each net.layerWeights $\{i, j\}$.learnFcn to a learning function. Set each net. biases $\{\mathrm{i}\}$. learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.
See newp for training examples.

More About

Algorithms

For each epoch, each vector (or sequence) is presented in order to the network, with the weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.

See Also

competlayer | train

traincgb

Conjugate gradient backpropagation with Powell-Beale restarts

Syntax

```
net.trainFcn = 'traincgb'
```

[net,tr] = train(net,...)

Description

traincgb is a network training function that updates weight and bias values according to the conjugate gradient backpropagation with Powell-Beale restarts.
net.trainFcn = 'traincgb' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traincgb.
Training occurs according to traincgb training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 e-10$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchch	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.

net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses traincgb with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgb,
1 Set net.trainFcn to 'traincgb'. This sets net.trainParam to traincgb's default parameters.
2 Set net. trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traincgb.

Examples

Here a neural network is trained to predict median house prices.

```
[x,t] = house_dataset;
net = feedforwardnet(10,'traincgb');
net \(=\) train(net, \(x, t)\);
\(y=\operatorname{net}(x)\)
```


Definitions

For all conjugate gradient algorithms, the search direction is periodically reset to the negative of the gradient. The standard reset point occurs when the number of iterations is equal to the number of network parameters (weights and biases), but there are other reset methods that can improve the efficiency of training. One such reset method was proposed by Powell ["Powe77"], based on an earlier version proposed by Beale ["Beal72"]. This technique restarts if there is very little orthogonality left between the current gradient and the previous gradient. This is tested with the following inequality:

$$
\left|\mathbf{g}_{k-1}^{T} \mathbf{g}_{k}\right| \geq 0.2\left\|\mathbf{g}_{k}\right\|^{2}
$$

If this condition is satisfied, the search direction is reset to the negative of the gradient.
The traincgb routine has somewhat better performance than traincgp for some problems, although performance on any given problem is difficult to predict. The storage requirements for the Powell-Beale algorithm (six vectors) are slightly larger than for Polak-Ribiére (four vectors).

More About

Algorithms

traincgb can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:
$x=x+a * d X ;$
where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFen is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction according to the formula

$$
d X=-g X+d X _o l d * Z ;
$$

where $g X$ is the gradient. The parameter Z can be computed in several different ways. The Powell-Beale variation of conjugate gradient is distinguished by two features. First, the algorithm uses a test to determine when to reset the search direction to the negative of the gradient. Second, the search direction is computed from the negative gradient, the previous search direction, and the last search direction before the previous reset. See Powell, Mathematical Programming, Vol. 12, 1977, pp. 241 to 254, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Powell, M.J.D., "Restart procedures for the conjugate gradient method," Mathematical Programming, Vol. 12, 1977, pp. 241-254

```
See Also
traingdm | traingda | traingdx | trainlm | traincgp | traincgf | trainscg |
trainoss | trainbfg
```


traincgf

Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax

```
net.trainFcn = 'traincgf'
```

[net,tr] = train(net,...)

Description

traincgf is a network training function that updates weight and bias values according to conjugate gradient backpropagation with Fletcher-Reeves updates.
net.trainFcn = 'traincgf' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traincgf.
Training occurs according to traincgf training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 e-10$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchcha	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.

net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses traincgf with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with traincgf,
1 Set net.trainFcn to 'traincgf'. This sets net.trainParam to traincgf's default parameters.
2 Set net. trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traincgf.

Examples

Here a neural network is trained to predict median house prices.

```
[x,t] = house_dataset;
net = feedforwardnet(10,'traincgf');
net \(=\) train(net, \(x, t)\);
\(y=\operatorname{net}(x)\)
```


Definitions

All the conjugate gradient algorithms start out by searching in the steepest descent direction (negative of the gradient) on the first iteration.

$$
\mathbf{p}_{0}=-\mathbf{g}_{0}
$$

A line search is then performed to determine the optimal distance to move along the current search direction:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k} \alpha_{k} \mathbf{p}_{k}
$$

Then the next search direction is determined so that it is conjugate to previous search directions. The general procedure for determining the new search direction is to combine the new steepest descent direction with the previous search direction:

$$
\mathbf{p}_{k}=-\mathbf{g}_{k}+\beta_{k} \mathbf{p}_{k-1}
$$

The various versions of the conjugate gradient algorithm are distinguished by the manner in which the constant B_{k} is computed. For the Fletcher-Reeves update the procedure is

$$
\beta_{k}=\frac{\mathbf{g}_{k}^{T} \mathbf{g}_{k}}{\mathbf{g}_{k-1}^{T} \mathbf{g}_{k-1}}
$$

This is the ratio of the norm squared of the current gradient to the norm squared of the previous gradient.

See ["FlRe64"] or ["HDB96"] for a discussion of the Fletcher-Reeves conjugate gradient algorithm.

The conjugate gradient algorithms are usually much faster than variable learning rate backpropagation, and are sometimes faster than trainrp, although the results vary from one problem to another. The conjugate gradient algorithms require only a little more storage than the simpler algorithms. Therefore, these algorithms are good for networks with a large number of weights.

Try the Neural Network Design demonstration nnd12cg ["HDB96"] for an illustration of the performance of a conjugate gradient algorithm.

More About

Algorithms

traincgf can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

$$
X=X+a * d X ;
$$

where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction, according to the formula

```
dX = -gX + dX_old*Z;
```

where $g X$ is the gradient. The parameter Z can be computed in several different ways. For the Fletcher-Reeves variation of conjugate gradient it is computed according to

Z = normnew_sqr/norm_sqr;
where norm_sqr is the norm square of the previous gradient and normnew_sqr is the norm square of the current gradient. See page 78 of Scales (Introduction to Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

```
See Also
traingdm | traingda | traingdx | trainlm | traincgb | trainscg | traincgp |
trainoss| trainbfg
```


traincgp

Conjugate gradient backpropagation with Polak-Ribiére updates

Syntax

```
net.trainFcn = 'traincgp'
```

[net,tr] = train(net,...)

Description

traincgp is a network training function that updates weight and bias values according to conjugate gradient backpropagation with Polak-Ribiére updates.
net.trainFcn = 'traincgp' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traincgp.
Training occurs according to traincgp training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 e-10$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.searchFcn	'srchcha	Name of line search routine to use

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.

net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 e-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses traincgp with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traincgp,

1 Set net.trainFcn to 'traincgp'. This sets net.trainParam to traincgp's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traincgp.

Examples

Examples

Here a neural network is trained to predict median house prices.

```
[x,t] = house_dataset;
net \(=\) feedforwardnet(10,'traincgp');
net \(=\) train(net, \(x, t)\);
\(y=\operatorname{net}(x)\)
```


Definitions

Another version of the conjugate gradient algorithm was proposed by Polak and Ribiére. As with the Fletcher-Reeves algorithm, traincgf, the search direction at each iteration is determined by

$$
\mathbf{p}_{k}=-\mathbf{g}_{k}+\beta_{k} \mathbf{p}_{k-1}
$$

For the Polak-Ribiére update, the constant B_{k} is computed by

$$
\beta_{k}=\frac{\Delta \mathbf{g}_{k-1}^{T} \mathbf{g}_{k}}{\mathbf{g}_{k-1}^{T} \mathbf{g}_{k-1}}
$$

This is the inner product of the previous change in the gradient with the current gradient divided by the norm squared of the previous gradient. See ["FlRe64"] or ["HDB96"] for a discussion of the Polak-Ribiére conjugate gradient algorithm.

The traincgp routine has performance similar to traincgf. It is difficult to predict which algorithm will perform best on a given problem. The storage requirements for Polak-Ribiére (four vectors) are slightly larger than for Fletcher-Reeves (three vectors).

More About

Algorithms

traincgp can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:
$X=X+a * d X ;$
where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFen is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous search direction according to the formula
$d X=-g X+d X _o l d * Z ;$
where $g X$ is the gradient. The parameter Z can be computed in several different ways. For the Polak-Ribiére variation of conjugate gradient, it is computed according to
$Z=\left(\left(g X-g X _o l d\right){ }^{\prime *} g X\right) / n o r m _s q r ;$
where norm_sqr is the norm square of the previous gradient, and gX_old is the gradient on the previous iteration. See page 78 of Scales (Introduction to Non-Linear Optimization, 1985) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Scales, L.E., Introduction to Non-Linear Optimization, New York, Springer-Verlag, 1985

```
See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb |
trainscg | trainoss | trainbfg
```


traingd

Gradient descent backpropagation

Syntax

```
net.trainFcn = 'traingd'
[net,tr] = train(net,...)
```


Description

traingd is a network training function that updates weight and bias values according to gradient descent.
net.trainFcn = 'traingd' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with traingd.
Training occurs according to traingd training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.lr	0.01	Learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 \mathrm{e}-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingd with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingd,

1 Set net.trainFcn to 'traingd'. This sets net.trainParam to traingd's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingd.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

The batch steepest descent training function is traingd. The weights and biases are updated in the direction of the negative gradient of the performance function. If you want to train a network using batch steepest descent, you should set the network trainFcn to traingd, and then call the function train. There is only one training function associated with a given network.

There are seven training parameters associated with traingd:

- epochs
- show
- goal
- time
- min_grad
- max_fail
- lr

The learning rate $l r$ is multiplied times the negative of the gradient to determine the changes to the weights and biases. The larger the learning rate, the bigger the step. If the learning rate is made too large, the algorithm becomes unstable. If the learning rate is set too small, the algorithm takes a long time to converge. See page 12-8 of ["HDB96"] for a discussion of the choice of learning rate.

The training status is displayed for every show iterations of the algorithm. (If show is set to NaN, then the training status is never displayed.) The other parameters determine when the training stops. The training stops if the number of iterations exceeds epochs,
if the performance function drops below goal, if the magnitude of the gradient is less than mingrad, or if the training time is longer than time seconds. max_fail, which is associated with the early stopping technique, is discussed in "Improving Generalization".

The following code creates a training set of inputs p and targets t. For batch training, all the input vectors are placed in one matrix.

```
p = [-1 -1 2 2; 0 5 0 5];
t = [l-1 -1 1 1];
```

Create the feedforward network.

```
net = feedforwardnet(3,'traingd');
```

In this simple example, turn off a feature that is introduced later.

```
net.divideFcn = '';
```

At this point, you might want to modify some of the default training parameters.

```
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
```

If you want to use the default training parameters, the preceding commands are not necessary.

Now you are ready to train the network.

```
[net,tr] = train(net,p,t);
```

The training record $t r$ contains information about the progress of training.
Now you can simulate the trained network to obtain its response to the inputs in the training set.

```
a = net(p)
a =
    -1.0026 -0.9962 1.0010 0.9960
```

Try the Neural Network Design demonstration nnd12sd1 ["HDB96"] for an illustration of the performance of the batch gradient descent algorithm.

More About

Algorithms

traingd can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent:

```
dX = lr * dperf/dX
```

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also
 traingdm | traingda | traingdx | trainlm

traingda

Gradient descent with adaptive learning rate backpropagation

Syntax

```
net.trainFcn = 'traingda'
[net,tr] = train(net,...)
```


Description

traingda is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate.
net.trainFcn = 'traingda' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traingda.
Training occurs according to traingda training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.lr	0.01	Learning rate
net.trainParam.lr_inc	1.05	Ratio to increase learning rate
net.trainParam.lr_dec	0.7	Ratio to decrease learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.max_perf_inc	1.04	Maximum performance increase
net.trainParam.min_grad	$1 e-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingda with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingda,

1 Set net.trainFcn to 'traingda'. This sets net.trainParam to traingda's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingda.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

With standard steepest descent, the learning rate is held constant throughout training. The performance of the algorithm is very sensitive to the proper setting of the learning rate. If the learning rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small, the algorithm takes too long to converge. It is not practical to determine the optimal setting for the learning rate before training, and, in fact, the optimal learning rate changes during the training process, as the algorithm moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the learning rate to change during the training process. An adaptive learning rate attempts to keep the learning step size as large as possible while keeping learning stable. The learning rate is made responsive to the complexity of the local error surface.

An adaptive learning rate requires some changes in the training procedure used by traingd. First, the initial network output and error are calculated. At each epoch new weights and biases are calculated using the current learning rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined ratio, max_perf_inc (typically 1.04), the new weights and biases are discarded. In addition, the learning rate is decreased (typically by multiplying by lr_dec $=0.7$). Otherwise, the new weights, etc., are kept. If the new error is less than the old error, the learning rate is increased (typically by multiplying by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the network can learn without large error increases. Thus, a near-optimal learning rate is obtained for the local terrain. When a larger learning rate could result in stable learning, the learning rate is increased. When the learning rate is too high to guarantee a decrease in error, it is decreased until stable learning resumes.

Try the Neural Network Design demonstration nnd12vl ["HDB96"] for an illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with the function traingda, which is called just like traingd, except for the additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is how it is called to train the previous two-layer network:

```
p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net = train(net,p,t);
y = net(p)
```


More About

Algorithms

traingda can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent:

```
dX = lr*dperf/dX
```

At each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also
traingd | traingdm | traingdx | trainlm

traingdm

Gradient descent with momentum backpropagation

Syntax

net.trainFcn = 'traingdm'
[net, tr] = train(net,...)

Description

traingdm is a network training function that updates weight and bias values according to gradient descent with momentum.
net.trainFcn = 'traingdm' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traingdm.
Training occurs according to traingdm training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.lr	0.01	Learning rate
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.mc	0.9	Momentum constant
net.trainParam.min_grad	$1 e-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between showing progress
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses traingdm with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingdm,

1 Set net.trainFcn to 'traingdm'. This sets net.trainParam to traingdm's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingdm.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

In addition to traingd, there are three other variations of gradient descent.
Gradient descent with momentum, implemented by traingdm, allows a network to respond not only to the local gradient, but also to recent trends in the error surface. Acting like a lowpass filter, momentum allows the network to ignore small features in the error surface. Without momentum a network can get stuck in a shallow local minimum. With momentum a network can slide through such a minimum. See page 12-9 of ["HDB96"] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter $l r$ indicates the learning rate, similar to the simple gradient descent. The parameter mc is the momentum constant that defines the amount of momentum. mc is set between 0 (no momentum) and values close to 1 (lots of momentum). A momentum constant of 1 results in a network that is completely insensitive to the local gradient and, therefore, does not learn properly.)

```
p = [-1 -1 2 2; 0 5 0 5];
t = [-1 -1 1 1];
net = feedforwardnet(3,'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net = train(net, p,t);
y = net(p)
```

Try the Neural Network Design demonstration nnd12mo ["HDB96"] for an illustration of the performance of the batch momentum algorithm.

More About

Algorithms

traingdm can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent with momentum,

```
dX = mc*dXprev + lr*(1-mc)*dperf/dX
```

where $d X p r e v$ is the previous change to the weight or bias.
Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also
traingd | traingda | traingdx | trainlm

traingdx

Gradient descent with momentum and adaptive learning rate backpropagation

Syntax

```
net.trainFcn = 'traingdx'
[net,tr] = train(net,...)
```


Description

traingdx is a network training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate.
net.trainFcn = 'traingdx' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with traingdx.
Training occurs according to traingdx training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.lr	0.01	Learning rate
net.trainParam.lr_inc	1.05	Ratio to increase learning rate
net.trainParam.lr_dec	0.7	Ratio to decrease learning rate
net.trainParam.max_fail	5	Maximum validation failures
net.trainParam.max_perf_inc	1.04	Maximum performance increase
net.trainParam.mc	0.9	Momentum constant
net.trainParam.min_grad	$1 e-5$	Minimum performance gradient
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI

net.trainParam.time \quad inf \quad Maximum time to train in seconds

Network Use

You can create a standard network that uses traingdx with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with traingdx,

1 Set net.trainFen to 'traingdx'. This sets net.trainParam to traingdx's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with traingdx.

See help feedforwardnet and help cascadeforwardnet for examples.

Definitions

The function traingdx combines adaptive learning rate with momentum training. It is invoked in the same way as traingda, except that it has the momentum coefficient mc as an additional training parameter.

More About

Algorithms

traingdx can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient descent with momentum,
$d X=m c * d X p r e v+l r * m c * d p e r f / d X$
where $d X p r e v$ is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor lr_inc. If performance increases by more than the factor max_perf_inc, the learning rate is adjusted by the factor $1 r$ _dec and the change that increased the performance is not made.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

See Also
traingd | traingda | traingdm | trainlm

trainlm

Levenberg-Marquardt backpropagation

Syntax

```
net.trainFcn = 'trainlm'
[net,tr] = train(net,...)
```


Description

trainlm is a network training function that updates weight and bias values according to Levenberg-Marquardt optimization.
trainlm is often the fastest backpropagation algorithm in the toolbox, and is highly recommended as a first-choice supervised algorithm, although it does require more memory than other algorithms.
net.trainFcn = 'trainlm' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with trainlm.
Training occurs according to trainlm training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 e-7$	Minimum performance gradient
net.trainParam.mu	0.001	Initial mu
net.trainParam.mu_dec	0.1	mu decrease factor
net.trainParam.mu_inc	10	mu increase factor
net.trainParam.mu_max	$1 e 10$	Maximum mu

net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Validation vectors are used to stop training early if the network performance on the validation vectors fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do not have any effect on training.
trainlm is the default training function for several network creation functions including newcf, newdtdnn, newff, and newnarx.

Network Use

You can create a standard network that uses trainlm with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainlm,
1 Set net.trainFcn to 'trainlm'. This sets net.trainParam to trainlm's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainlm.

See help feedforwardnet and help cascadeforwardnet for examples.

Examples

Here a neural network is trained to predict median house prices.

```
[x,t] = house_dataset;
net = feedforwardnet(10,'trainlm');
net = train(net,x,t);
y = net(x)
```


Definitions

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to approach second-order training speed without having to compute the Hessian matrix. When the performance function has the form of a sum of squares (as is typical in training feedforward networks), then the Hessian matrix can be approximated as
$\mathbf{H}=\mathbf{J}^{T} \mathbf{J}$
and the gradient can be computed as
$\mathbf{g}=\mathbf{J}^{T} \mathbf{e}$
where \mathbf{J} is the Jacobian matrix that contains first derivatives of the network errors with respect to the weights and biases, and \mathbf{e} is a vector of network errors. The Jacobian matrix can be computed through a standard backpropagation technique (see ["HaMe94"]) that is much less complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following Newton-like update:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left[\mathbf{J}^{T} \mathbf{J}+\mu \mathbf{I}\right]^{-1} \mathbf{J}^{T} \mathbf{e}
$$

When the scalar μ is zero, this is just Newton's method, using the approximate Hessian matrix. When μ is large, this becomes gradient descent with a small step size. Newton's method is faster and more accurate near an error minimum, so the aim is to shift toward Newton's method as quickly as possible. Thus, μ is decreased after each successful step (reduction in performance function) and is increased only when a tentative step would increase the performance function. In this way, the performance function is always reduced at each iteration of the algorithm.

The original description of the Levenberg-Marquardt algorithm is given in ["Marq63"]. The application of Levenberg-Marquardt to neural network training is described in ["HaMe94"] and starting on page 12-19 of ["HDB96"]. This algorithm appears to be the fastest method for training moderate-sized feedforward neural networks (up to several hundred weights). It also has an efficient implementation in MATLAB ${ }^{\circledR}$ software, because the solution of the matrix equation is a built-in function, so its attributes become even more pronounced in a MATLAB environment.

Try the Neural Network Design demonstration nnd12m ["HDB96"] for an illustration of the performance of the batch Levenberg-Marquardt algorithm.

Limitations

This function uses the Jacobian for calculations, which assumes that performance is a mean or sum of squared errors. Therefore, networks trained with this function must use either the mse or sse performance function.

More About

Algorithms

trainlm supports training with validation and test vectors if the network's NET. divideFcn property is set to a data division function. Validation vectors are used to stop training early if the network performance on the validation vectors fails to improve or remains the same for max_fail epochs in a row. Test vectors are used as a further check that the network is generalizing well, but do not have any effect on training.
trainlm can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate the Jacobian $j X$ of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to LevenbergMarquardt,

```
jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je
```

where E is all errors and I is the identity matrix.
The adaptive value mu is increased by mu_inc until the change above results in a reduced performance value. The change is then made to the network and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate the Jacobian $j X$. If mem_reduc is 1 , then trainlm runs the fastest, but can require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory required by a factor of two, but slows trainlm somewhat. Higher states continue to decrease the amount of memory needed and increase training times.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- mu exceeds mu_max.
- Validation performance has increased more than max fail times since the last time it decreased (when using validation).

trainoss

One-step secant backpropagation

Syntax

```
net.trainFcn = 'trainoss'
[net,tr] = train(net,...)
```


Description

trainoss is a network training function that updates weight and bias values according to the one-step secant method.
net.trainFcn = 'trainoss' sets the network trainFcn property.
[net,tr] $=$ train(net,...) trains the network with trainoss.
Training occurs according to trainoss training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.min_grad	$1 \mathrm{e}-10$	Minimum performance gradient
net.trainParam.searchFcn	'srchbac	Name of line search routine to use
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol	20	Divide into delta to determine tolerance for linear search.
net.trainParam.alpha	0.001	Scale factor that determines sufficient reduction in perf
net.trainParam.beta	0.1	Scale factor that determines sufficiently large step size
net.trainParam.delta	0.01	Initial step size in interval location step
net.trainParam.gama	0.1	Parameter to avoid small reductions in performance, usually set to 0.1 (see srch_cha)
net.trainParam.low_lim	0.1	Lower limit on change in step size
net.trainParam.up_lim	0.5	Upper limit on change in step size
net.trainParam.maxstep	100	Maximum step length
net.trainParam.minstep	$1.0 \mathrm{e}-6$	Minimum step length
net.trainParam.bmax	26	Maximum step size

Network Use

You can create a standard network that uses trainoss with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainoss:

1 Set net.trainFcn to 'trainoss'. This sets net.trainParam to trainoss's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainoss.

Examples

Here a neural network is trained to predict median house prices.

```
[x,t] = house_dataset;
net \(=\) feedforwardnet(10,'trainoss');
net \(=\) train(net, \(x, t\) );
```

$$
y=\operatorname{net}(x)
$$

Definitions

Because the BFGS algorithm requires more storage and computation in each iteration than the conjugate gradient algorithms, there is need for a secant approximation with smaller storage and computation requirements. The one step secant (OSS) method is an attempt to bridge the gap between the conjugate gradient algorithms and the quasiNewton (secant) algorithms. This algorithm does not store the complete Hessian matrix; it assumes that at each iteration, the previous Hessian was the identity matrix. This has the additional advantage that the new search direction can be calculated without computing a matrix inverse.

The one step secant method is described in ["Batt92"]. This algorithm requires less storage and computation per epoch than the BFGS algorithm. It requires slightly more storage and computation per epoch than the conjugate gradient algorithms. It can be considered a compromise between full quasi-Newton algorithms and conjugate gradient algorithms.

More About

Algorithms

trainoss can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

$$
X=X+a * d X
$$

where $d X$ is the search direction. The parameter a is selected to minimize the performance along the search direction. The line search function searchFcn is used to locate the minimum point. The first search direction is the negative of the gradient of performance. In succeeding iterations the search direction is computed from the new gradient and the previous steps and gradients, according to the following formula:

```
dX = -gX + Ac*X_step + Bc*dgX;
```

where gX is the gradient, X _step is the change in the weights on the previous iteration, and $\operatorname{dg} \mathrm{X}$ is the change in the gradient from the last iteration. See Battiti (Neural
Computation, Vol. 4, 1992, pp. 141-166) for a more detailed discussion of the one-step secant algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Battiti, R., "First and second order methods for learning: Between steepest descent and Newton's method," Neural Computation, Vol. 4, No. 2, 1992, pp. 141-166

```
See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb |
trainscg | traincgp | trainbfg
```


trainr

Random order incremental training with learning functions

Syntax

```
net.trainFcn = 'trainr'
[net,tr] = train(net,...)
```


Description

trainr is not called directly. Instead it is called by train for networks whose net.trainFcn property is set to 'trainr', thus:
net.trainFcn = 'trainr' sets the network trainFcn property.
[net,tr] = train(net,...) trains the network with trainr.
trainr trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in random order.

Training occurs according to trainr training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trainr by calling competlayer or selforgmap. To prepare a custom network to be trained with trainr,

1 Set net.trainFcn to 'trainr'. This sets net.trainParam to trainr's default parameters.
2 Set each net.inputWeights $\{i, j\}$. learnFcn to a learning function.
3 Set each net. layerWeights $\{i, j\}$.learnFcn to a learning function.
4 Set each net.biases\{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.
See help competlayer and help selforgmap for training examples.

More About

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different random order, with the network and weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- Performance is minimized to the goal.
- The maximum amount of time is exceeded.

See Also

train

trainrp

Resilient backpropagation

Syntax

```
net.trainFcn = 'trainrp'
[net,tr] = train(net,...)
```


Description

trainrp is a network training function that updates weight and bias values according to the resilient backpropagation algorithm (Rprop).
net.trainFcn = 'trainrp' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with trainrp.
Training occurs according to trainrp training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-5$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.lr	0.01	Learning rate
net.trainParam.delt_inc	1.2	Increment to weight change
net.trainParam.delt_dec	0.5	Decrement to weight change
net.trainParam.delta0	0.07	Initial weight change

net.trainParam.deltamax	50.0	Maximum weight change

Network Use

You can create a standard network that uses trainrp with feedforwardnet or cascadeforwardnet.

To prepare a custom network to be trained with trainrp,
1 Set net.trainFcn to 'trainrp'. This sets net.trainParam to trainrp's default parameters.
2 Set net. trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainrp.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [0 1 1 2 3 4 5];
t = [00 0 0 1 1 1 1];
```

A two-layer feed-forward network with two hidden neurons and this training function is created.

Create and test a network.

```
net = feedforwardnet(2,'trainrp');
```

Here the network is trained and retested.

```
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = net(p)
```

See help feedforwardnet and help cascadeforwardnet for other examples.

Definitions

Multilayer networks typically use sigmoid transfer functions in the hidden layers. These functions are often called "squashing" functions, because they compress an infinite input range into a finite output range. Sigmoid functions are characterized by the fact that their slopes must approach zero as the input gets large. This causes a problem when you use steepest descent to train a multilayer network with sigmoid functions, because the gradient can have a very small magnitude and, therefore, cause small changes in the weights and biases, even though the weights and biases are far from their optimal values.

The purpose of the resilient backpropagation (Rprop) training algorithm is to eliminate these harmful effects of the magnitudes of the partial derivatives. Only the sign of the derivative can determine the direction of the weight update; the magnitude of the derivative has no effect on the weight update. The size of the weight change is determined by a separate update value. The update value for each weight and bias is increased by a factor delt_inc whenever the derivative of the performance function with respect to that weight has the same sign for two successive iterations. The update value is decreased by a factor delt_dec whenever the derivative with respect to that weight changes sign from the previous iteration. If the derivative is zero, the update value remains the same. Whenever the weights are oscillating, the weight change is reduced. If the weight continues to change in the same direction for several iterations, the magnitude of the weight change increases. A complete description of the Rprop algorithm is given in [" RiBr 93 "].

The following code recreates the previous network and trains it using the Rprop algorithm. The training parameters for trainrp are epochs, show, goal, time, min_grad, max_fail, delt_inc, delt_dec, delta0, and deltamax. The first eight parameters have been previously discussed. The last two are the initial step size and the maximum step size, respectively. The performance of Rprop is not very sensitive to the settings of the training parameters. For the example below, the training parameters are left at the default values:

```
p = [-1 -1 2 2;0 5 0 5];
t = [\begin{array}{llll}{-1}&{-1}&{1}&{1}\end{array}];
net = feedforwardnet(3,'trainrp');
net = train(net,p,t);
y = net(p)
```

rprop is generally much faster than the standard steepest descent algorithm. It also has the nice property that it requires only a modest increase in memory requirements.

You do need to store the update values for each weight and bias, which is equivalent to storage of the gradient.

More About

Algorithms

trainrp can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to the following:

```
dX = deltaX.*sign(gX);
```

where the elements of deltaX are all initialized to delta0, and $g X$ is the gradient. At each iteration the elements of deltaX are modified. If an element of $g X$ changes sign from one iteration to the next, then the corresponding element of deltaX is decreased by delta_dec. If an element of $g X$ maintains the same sign from one iteration to the next, then the corresponding element of deltaX is increased by delta_inc. See Riedmiller, M., and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks,1993, pp. 586-591.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Riedmiller, M., and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks,1993, pp. 586-591.

See Also
 traingdm | traingda | traingdx | trainlm | traincgp | traincgf | traincgb | trainscg | trainoss | trainbfg

trainru

Unsupervised random order weight/bias training

Syntax

```
net.trainFcn = 'trainru'
[net,tr] = train(net,...)
```


Description

trainru is not called directly. Instead it is called by train for networks whose net.trainFcn property is set to 'trainru', thus:
net.trainFcn = 'trainru' sets the network trainFcn property.
[net, tr] = train(net,...) trains the network with trainru.
trainru trains a network with weight and bias learning rules with incremental updates after each presentation of an input. Inputs are presented in random order.

Training occurs according to trainru training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	Inf	Maximum time to train in seconds

Network Use

To prepare a custom network to be trained with trainru,

1 Set net.trainFcn to 'trainru'. This sets net.trainParam to trainru's default parameters.
2 Set each net.inputWeights $\{i, j\}$.learnFcn to a learning function.
3 Set each net.layerWeights $\{i, j\}$.learnFcn to a learning function.
4 Set each net.biases\{i\}.learnFcn to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To train the network,
1 Set net.trainParam properties to desired values.
2 Set weight and bias learning parameters to desired values.
3 Call train.

More About

Algorithms

For each epoch, all training vectors (or sequences) are each presented once in a different random order, with the network and weight and bias values updated accordingly after each individual presentation.

Training stops when any of these conditions is met:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.

See Also

train | trainr

trains

Sequential order incremental training with learning functions

Syntax

net.trainFcn = 'trains'
[net,tr] = train(net,...)

Description

trains is not called directly. Instead it is called by train for networks whose net. trainFcn property is set to 'trains', thus:
net.trainFcn = 'trains' sets the network trainFcn property.
[net, tr] = train(net,...) trains the network with trains.
trains trains a network with weight and bias learning rules with sequential updates. The sequence of inputs is presented to the network with updates occurring after each time step.

This incremental training algorithm is commonly used for adaptive applications.
Training occurs according to trains training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.goal	0	Performance goal
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.time	Inf	Maximum time to train in seconds

Network Use

You can create a standard network that uses trains for adapting by calling perceptron or linearlayer.

To prepare a custom network to adapt with trains,
1 Set net.adaptFcn to 'trains'. This sets net.adaptParam to trains's default parameters.
2 Set each net.inputWeights $\{i, j\}$. learnFcn to a learning function. Set each net. layerWeights $\{i, j\}$. learnFcn to a learning function. Set each net. biases $\{\mathrm{i}\} . l e a r n F c n$ to a learning function. (Weight and bias learning parameters are automatically set to default values for the given learning function.)

To allow the network to adapt,
1 Set weight and bias learning parameters to desired values.
2 Call adapt.
See help perceptron and help linearlayer for adaption examples.

More About

Algorithms

Each weight and bias is updated according to its learning function after each time step in the input sequence.

See Also
train | trainb | trainc | trainr

trainscg

Scaled conjugate gradient backpropagation

Syntax

```
net.trainFcn = 'trainscg
[net,tr] = train(net,...)
```


Description

trainscg is a network training function that updates weight and bias values according to the scaled conjugate gradient method.
net.trainFcn = 'trainscg' sets the network trainFcn property.
[net, tr] $=$ train(net,...) trains the network with trainscg.
Training occurs according to trainscg training parameters, shown here with their default values:

net.trainParam.epochs	1000	Maximum number of epochs to train
net.trainParam.show	25	Epochs between displays (NaN for no displays)
net.trainParam.showCommandLine	0	Generate command-line output
net.trainParam.showWindow	1	Show training GUI
net.trainParam.goal	0	Performance goal
net.trainParam.time	inf	Maximum time to train in seconds
net.trainParam.min_grad	$1 \mathrm{e}-6$	Minimum performance gradient
net.trainParam.max_fail	6	Maximum validation failures
net.trainParam.sigma	$5.0 \mathrm{e}-5$	Determine change in weight for second derivative approximation
net.trainParam.lambda	$5.0 \mathrm{e}-7$	Parameter for regulating the indefiniteness of the Hessian

Network Use

You can create a standard network that uses trainscg with feedforwardnet or cascadeforwardnet. To prepare a custom network to be trained with trainscg,

1 Set net.trainFcn to 'trainscg'. This sets net.trainParam to trainscg's default parameters.
2 Set net.trainParam properties to desired values.
In either case, calling train with the resulting network trains the network with trainscg.

Examples

Here is a problem consisting of inputs p and targets t to be solved with a network.

```
p = [lllllll}
t = [llllllll
```

A two-layer feed-forward network with two hidden neurons and this training function is created.

```
net = feedforwardnet(2,'trainscg');
```

Here the network is trained and retested.

```
net = train(net,p,t);
a = net(p)
```

See help feedforwardnet and help cascadeforwardnet for other examples.

More About

Algorithms

trainscg can train any network as long as its weight, net input, and transfer functions have derivative functions. Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X.

The scaled conjugate gradient algorithm is based on conjugate directions, as in traincgp, traincgf, and traincgb, but this algorithm does not perform a line search at each iteration. See Moller (Neural Networks, Vol. 6, 1993, pp. 525-533) for a more detailed discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occurs:

- The maximum number of epochs (repetitions) is reached.
- The maximum amount of time is exceeded.
- Performance is minimized to the goal.
- The performance gradient falls below min_grad.
- Validation performance has increased more than max_fail times since the last time it decreased (when using validation).

References

Moller, Neural Networks, Vol. 6, 1993, pp. 525-533

```
See Also
traingdm | traingda | traingdx | trainlm | trainrp | traincgf | traincgb |
trainbfg | traincgp | trainoss
```


tribas

Triangular basis transfer function

Graph and Symbol

Δ
$a=t r i b a s(n)$

Triangular Basis Function

Syntax

$A=\operatorname{tribas}(N, F P)$

Description

tribas is a neural transfer function. Transfer functions calculate a layer's output from its net input.
$A=\operatorname{tribas}(N, F P)$ takes N and optional function parameters,

N	S-by-Q matrix of net input (column) vectors
FP	Struct of function parameters (ignored)

and returns A, an S-by-Q matrix of the triangular basis function applied to each element of N .
info $=$ tribas('code') can take the following forms to return specific information:
tribas('name') returns the name of this function.
tribas('output', FP) returns the [min max] output range.
tribas('active', FP) returns the [min max] active input range.
tribas('fullderiv') returns 1 or 0 , depending on whether dA_dN is S-by-S-by-Q or S-by-Q.
tribas('fpnames') returns the names of the function parameters.
tribas('fpdefaults') returns the default function parameters.

Examples

Here you create a plot of the tribas transfer function.

```
n = -5:0.1:5;
a = tribas(n);
plot(n,a)
```

Assign this transfer function to layer i of a network.

```
net.layers{i}.transferFcn = 'tribas';
```


More About

Algorithms

```
a = tribas(n) = 1 - abs(n), if -1 <= n <= 1
    = 0, otherwise
```

See Also
sim | radbas

tritop

Triangle layer topology function

Syntax

```
pos = triptop(dim1,dim2,...,dimN)
```


Description

tritop calculates neuron positions for layers whose neurons are arranged in an N dimensional triangular grid.

```
pos = triptop(dim1,dim2,...,dimN) takes N arguments,
```

dimi	Length of layer in dimension i

and returns an N -by-S matrix of N coordinate vectors, where S is the product of dim1*dim2*...*dimN.

Examples

This code creates and displays a two-dimensional layer with 40 neurons arranged in an 8 -by- 5 triangular grid.

```
pos = tritop(8,5);
net = selforgmap([8 5],'topologyFcn','tritop');
plotsomtop(net)
```

```
See Also
gridtop | hextop | randtop
```


unconfigure

Unconfigure network inputs and outputs

Syntax

```
unconfigure(net)
unconfigure(net, 'inputs', i)
unconfigure(net, 'outputs', i)
```


Description

unconfigure (net) returns a network with its input and output sizes set to 0 , its input and output processing settings and related weight initialization settings set to values consistent with zero-sized signals. The new network will be ready to be reconfigured for data of the same or different dimensions than it was previously configured for.
unconfigure(net, 'inputs', i) unconfigures the inputs indicated by the indices i. If no indices are specified, all inputs are unconfigured.
unconfigure(net, 'outputs', i) unconfigures the outputs indicated by the indices i. If no indices are specified, all outputs are unconfigured.

Examples

Here a network is configured for a simple fitting problem, and then unconfigured.

```
[x,t] = simplefit_dataset;
net = fitnet(10);
view(net)
net = configure(net,x,t);
view(net)
net = unconfigure(net)
view(net)
```

```
See Also
configure | isconfigured
```


vec2ind

Convert vectors to indices

Syntax

[ind, n] = vec2ind

Description

ind2vec and vec2ind (vec) allow indices to be represented either by themselves or as vectors containing a 1 in the row of the index they represent.
[ind, n$]$ = vec2ind takes one argument,

vec	Matrix of vectors, each containing a single 1

and returns

ind	The indices of the 1s
n	The number of rows in vec

Examples

Here three vectors are converted to indices and back, while preserving the number of rows.

```
vec = [0 0 1 0; 1 0 0 0; 0 1 0 0]'
vec =
\begin{tabular}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{tabular}
[ind,n] = vec2ind(vec)
```

```
ind =
    3 1 2
n =
    4
vec2 = full(ind2vec(ind,n))
vec2 =
    0
    1 0
    0}
```


See Also

ind2vec | sub2ind | ind2sub

view

View neural network

Syntax

view(net)

Description

view (net) launches a window that shows your neural network (specified in net) as a graphical diagram.

[^0]: Example:
 Data Types: double | cell

